Skip to main content
Log in

Features of the formation of nanoporous membranes based on alumina from foil and new fields of applications

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The peculiarities of the formation of porous membranes based on aluminum oxide obtained by the electrochemical anodization of aluminum foil with the preset topological parameters of pores-capillares (20–220 nm) have been studied. The methods to study the membranes based on nanoporous aluminum oxide are proposed. The developed nanoporous material possesses the properties of screening IR radiation in a spectral range of 8–14 μm (corresponds to the spectral region of thermal radiation of bioobjecs). The membranes based on anodized aluminum foil provide the fulfilling the functions of channeling a high-flow helium ions with an energy of 1.5–2 MeV with the experimentally found coefficient of transmission of more than 60%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gavrilov, S.A. and Belov, A.N., Elektrokhimicheskie protsessy v tekhnologii mikro-i nanoelektroniki. Uchebnoe posobie (Electrochemical Processes in Technology of Micro and Nanoelectronics, The School-Book), Moscow: Vysshee Obrazovanie, 2009.

    Google Scholar 

  2. Vlasyuk, D.P., Mamykin, A.I., Moshnikov, V.A., and Muratova, E.N., Mechanisms of growth and the structure of the adsorption layer of water at the surface of porous silicon, Glass Phys. Chem., 2015, vol. 41, no. 5, pp. 551–556.

    Article  Google Scholar 

  3. Issledovanie. Tekhnologiya i ispol’zovanie nanoporistykh nositelei lekarstv v meditsine (Technology and Application of Nanoporous Carriers of Drugs in Medicine) Shevchenko, V.Ya., Kiselev, O.I., Sokolov, V.N., Eds., St. Petersburg: Khimizdat, 2015.

  4. Nanotekhnologiya: fizika, protsessy, diagnostika, pribory (Nanotechnology: Physics, Processes, Devices,) Luchinin, V.V. and Tairov, Yu.M., Eds., Moscow: Fizmatlit, 2006.

  5. Moshnikov, V.A., Tairov, Yu.M., Khamova, T.V., and Shilova, O.A., Zol’-gel' tekhnologiya mikro-i nanokompozitov (Sol-Gel Technology of Micro and Nanocomposites) Shilova, O.A., Ed., St. Petersburg: Lan’, 2013.

    Google Scholar 

  6. Arsent’ev, M.Yu., Pugachev, K.E., Tikhonov, P.A., and Shmigel’, A.V., Electrochemical fabrication and studies of metal silver nanoparticles, Glass Phys. Chem., 2015, vol. 41, no. 3, pp. 329–333.

    Article  Google Scholar 

  7. Khimicheskie metody polucheniya keramicheskikh i polimernykh nanomaterialov iz zhidkoi fazy: Ucheb. posobie (Chemical Methods for Production of Ceramic and Polymer Nanomaterials from Liquid Phase, The School-Book), Luchinin, V.V. and Shilova, O.A., Eds., St. Petersburg: SPbGETU “LETI,” 2013.

  8. Moshnikov, V.A. and Tomaev, V.V., Electrochemical processing of crystals based on selenides and chalcogenides of the lead and tin, Elektrokhimiya, 1991, vol. 27, no. 6, pp. 769–772.

    Google Scholar 

  9. Mamykin, A.I., Moshnikov, V.A., and Il’in, A.Yu., Magneto-resonance spectroscopy of porous quantumsize structures, Semiconductors, 1998, vol. 32, no. 3, pp. 322–324.

    Article  Google Scholar 

  10. Eftenhary, Ali, Nanostructured Materials in Electrochemistry, Weinheim: Wiley-VCH, 2008.

  11. Luchinin, V.V., Moshnikov, V.A., and Samigullin, R.Sh., Formation of ordered nanoscale capillary membranes based on anodic alumina, J. Phys.: Conf. Ser., 2015, vol. 586, p. 012008

    Google Scholar 

  12. Khalameida, S.V., Sidorchuk, V.V., Skubiszewska-Zieba J., Leboda R., and Zazhigalov, V.A., Sol-gel synthesis and properties of compositions containing heteropoly compounds in porous silica matrix, Glass Phys. Chem., 2014, vol. 40, no. 1, pp. 8–16.

    Article  Google Scholar 

  13. Bugaeva, A.Yu. and Dudkin, B.N., Modification of the surface of alumina oxide nanofibers by zirconia nanoparticles, Glass Phys. Chem., 2014, vol. 40, no. 1, pp. 37–40.

    Article  Google Scholar 

  14. Zimina, T.M., Laboratories-on-a-chip for telemedicine, Biotekhnosfera, 2012, no. 1, pp. 29–40.

    Google Scholar 

  15. Zimina, T.M. and Luchinin, V.V., Miniature analytical platforms: expectations, reality and prospects, Nanoindustriya, 2010, vol. 23, pp. 80–88.

    Google Scholar 

  16. Komarov, F.F., Kamyshin, A.S., and Grishin, P.A., Focusing ion beams by dielectric micro and nanocapillary structures, Zh. Nano-Elektron. Fiz., 2013, vol. 5, no. 1, p. 01015.

    Google Scholar 

  17. Chernykh, P.N. and Chechenin, N.G., Metodika ionno-puchkovogo analiza na uskoritele HVEE AN-2500. Uchebnoe posobie (Methods of Ion-Beam Analysis on HVEE AN-2500 Accelerator, The School-Book), Moscow: Uchebno-Nauchn. Tsentra Mosk. Gos. Univ., 2011.

    Google Scholar 

  18. Zhu, Z., Zhu, D., Lu, R., et al., The experimental progress in studying of channeling of charged particles along nanostructure, Proc. of SPIE, 2005, vol. 5974, p. 13.

    Google Scholar 

  19. Chumakov, A.P., Roslyakov, I.V., Napol’skii, K.S., Eliseev, A.A., Lukashin, A.V., Eckerlebe, H., Bouwman, W.G., Belov, D.V., Okorokov, A.I., and Grigoriev, S.V., Influence of substrate microstructure on longitudinal correlation length of porous system of anodic alumina: small-angle scattering study, Nanotechnol. Russ., 2013, vol. 8, nos. 9–10, pp. 631–638.

    Article  Google Scholar 

  20. Potrakhov, N.N., Khayutin, S.G., Lifshits, V.A., and Oses, R., ‘PRDU KROS’ X-ray unit for rapid determination of the crystallographic orientation of cubic single crystals using back-reflection Laue patterns, Zavod. Lab., Diagn. Mater., 2015, vol. 81, no. 8, pp. 27–30.

    Google Scholar 

  21. Mirkin, L.I., Spravochnik po rentgenostrukturnomu analizu polikristallov (Reference Book on X-ray Structural Analysis of Polycrystals), Umanskii, Ya.S., Ed., Moscow: Fizmatgiz, 1961.

    Google Scholar 

  22. Ng, C.K.Y and Ngan, A.H.W., Growth sustainability of nanopore channels in anodic aluminum oxide guided with prepatterns, J. Phys. Chem. C, 2013, vol. 117, no. 23, pp. 12183–12190.

    Article  Google Scholar 

  23. Travkin, P.G., Sokolova, E.N., Spivak, Yu.M., and Moshnikov, V.A., Electrochemical cell for porous anode oxides of metals and semiconductors formation, RFPatent no. 2012122692, 2012.

    Google Scholar 

  24. Muratova, E.N., Micro-and nanosized 3d-ordered capillary matrixes based on anodic alumina oxide, Biotekhnosfera, 2014, no. 6, pp. 35–40.

    Google Scholar 

  25. Moshnikov, V.A., Sokolova, E.N., and Spivak, Yu.M., Formation and analysis of structures based on porous alumina oxide, Izv. SPbGETU “LETI,” 2011, no. 2, pp. 13–19.

    Google Scholar 

  26. Muratova, E.N., Spivak, Yu.M., Moshnikov, V.A., Petrov, D.V., Shemukhin, A.A., and Shimanova, V.V., Influence of technological parameters of nanoporous Al2O3 layers’ preparation on their structural characteristics, Glass Phys. Chem., 2013, vol. 39, no. 4, pp. 320–328.

    Article  Google Scholar 

  27. Spivak, Yu.M., Sokolova, E.N., Petenko, O.S., and Travkin, P.G., Parameter determination of porous structure in por-Si and por-Al2O3 by computer treatment of scanning and atomic-force microscopy data, Molod. Uchen., 2012, no. 5, pp. 1–4.

    Google Scholar 

  28. Muratova, E.N. and Matyushkin, L.B., Investigation of the optical properties of nanoporous membranes based on alumina, Smart Nanocompos., 2013, vol. 4, no. 2, pp. 25–31.

    Google Scholar 

  29. Shemukhin, A.A. and Muratova, E.N., Investigation of transmission of 1.7-MeV He+ beams through porous alumina membranes, Tech. Phys. Lett., 2014, vol. 40, no. 5, pp. 219–221.

    Article  Google Scholar 

  30. Shemukhin, A.A., Muratova, E.N., Moshnikov, V.A., Luchinin, V.V., and Chernysh, V.S., Study of porous alumina oxide membranes using Rutherford backscattering method, Vakuum. Tekh. Tekhnol., 2014, vol. 24, no. 1, pp. 43–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Muratova.

Additional information

Original Russian Text © E.N. Muratova, V.V. Luchinin, V.A. Moshnikov, V.A. Lifshits, L.B. Matyushkin, M.F. Panov, N.N. Potrakhov, S.A. Galunin, V.V. Ishin, A.A. Shemukhin, 2017, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muratova, E.N., Luchinin, V.V., Moshnikov, V.A. et al. Features of the formation of nanoporous membranes based on alumina from foil and new fields of applications. Glass Phys Chem 43, 163–169 (2017). https://doi.org/10.1134/S1087659617020122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659617020122

Keywords

Navigation