Skip to main content
Log in

Simulation of the molecular dynamics of the evolution of argon structural characteristics in the area of glass transition

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The results of the simulation of the glass transition process of argon at cooling rates of 1012, 1013, 1014, and 1015 K/s are reported. At temperatures far below the melting point, T f = 83.8 K, the second maximum of the radial distribution function is split into two peaks, which is connected with the glass transition. In addition, the form of this split changes depending on the cooling rates, which points to different structural states of the system. The calculation of the sound velocity in argon by means of correlation functions gives rise to quite reasonable results in the gaseous, liquid, glass, and crystalline states, including the areas of phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martynov, G.A., Klassicheskaya Statisticheskaya mekhanika. Teoriya zhidkostei (Classical Statistical Mechanics, The Theory of Liquids), 2nd ed., Dolgoprudnyi: Intellekt, 2014, vol. 328.

  2. Sarkisov, G.N., Molecular distribution functions of stable, metastable and amorphous classical models, Phys. Usp., 2002, vol. 45, no. 6, pp. 597–617.

    Article  Google Scholar 

  3. Tsydypov, Sh.B., Parfenov, A.N., Sanditov, D.S., Agrafonov, Yu.V., and Nesterov, A.S., Application of the molecular dynamics method and the excited state model to the investigation of the glass transition in argon, Glass Phys. Chem., 2006, vol. 32, no. 1, pp. 83–88.

    Article  Google Scholar 

  4. Borisova, N.V., Shul’ts, M.M., and Ushakov, V.M., Vitrification of liquid phase systems: Configuration entropy and scale of cooperative motion, Inf. Byull. RFFI, 1998, vol. 6, no. 3, p. 502.

    Google Scholar 

  5. Rostiashvili, V.G., Fluktuatsionnaya gidrodinamika i teoriya steklovaniya (Fluctuation Fluid Mechanics and Vitrification Theory), Chernogolovka: Ob’ed. Inst. Khim. Fiz., 1986.

    Google Scholar 

  6. Biao, C. and Zhenhua, C., Bifurcation theory model for the glass transition, Phys. B: Condens. Matter, 1999, vol. 266, no. 3, pp. 152–161.

    Article  Google Scholar 

  7. Gettse, V., Fazovye perekhody zhidkost’-steklo (Phase Liquid-Glass Transitions), Moscow: Nauka, 1992.

    Google Scholar 

  8. Sanditov, D.S., Tsydypov, Sh.B., and Bainova, A.B., A criterion of the vitrification of liquids in the model of excited atoms, Russ. J. Phys. Chem. A, 2004, vol. 78, no. 5, pp. 781–785.

    Google Scholar 

  9. Angell, C.A., Clarke, J.H.R., and Woodcock, L.V., Interaction potentials and glass formation: A survey of computer experiments, Adv. Chem. Phys., 1981, vol. 48, pp. 397–453.

    Google Scholar 

  10. Jackle, J., Models of the glass transition, Rep. Prog. Phys., 1986, vol. 49, pp. 171–231.

    Article  Google Scholar 

  11. Yonezava, F., Computer glass transitions, in Topological Disorder in Condensed Matter, Proceedings of the 5th Taniguchi International Symposium, Yonezava, F. and Ninomiya, T., Eds., Berlin: Springer, 1983, pp. 80–110.

    Chapter  Google Scholar 

  12. Kolotova, L.N., Norman, G.E., and Pisarev, V.V, Molecular-dynamical modeling of overcooled aluminium melt vitrification, Fiz.-Khim. Kinet. Gaz. Dinam., 2013, vol. 15, no. 1, pp. 15–19.

    Google Scholar 

  13. Kim, K. and Munakata, T., Glass transition of hard sphere systems: Molecular dynamics and density functional theory, Phys. Rev. E, 2003, vol. 68, no. 2, pp. 021502–021502.

    Article  Google Scholar 

  14. Heermann, D.W., Computer Simulation Methods in Theoretical Physics, Berlin: Springer, 1986.

    Book  Google Scholar 

  15. Berlin, A.A., Mazo, M.A., and Sinel’nikov, N.N., Melting and vitrification in binary systems of disks on a plane, Dokl. Phys., 1998, vol. 43, no. 2, pp. 144–147.

    Google Scholar 

  16. Croxton, C., Liquid State Physics, London: Cambridge Univ. Press, 1974.

    Google Scholar 

  17. Physics of Simple Liquids, Temperley, H.N.V., Rawlinson, J.S., and Rushbroke, G.S., Eds., Amsterdam: North-Holland, 1968.

  18. Balesku, R., Equilibrium and Nonequilibrium Statistical Mechanics, New York: Wiley, 1978.

    Google Scholar 

  19. Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Tables on the Thermophysical Properties of Liquids and Gases), Moscow: Fizmatgiz, 1963; New York: Halsted Press, 1975.

    Google Scholar 

  20. Stewart, R.B. and Jacobsen, R.T., J. Phys. Chem. Ref. Data, 1989, vol. 18, no. 2, pp. 639–798.

    Article  Google Scholar 

  21. Younglove, B.A., Thermophysical properties of fluids. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen, J. Phys. Chem. Ref. Data, Suppl., 1982, vol. 11, no. suppl. 1, pp. 1–353.

    Article  Google Scholar 

  22. Rabinovich, V.A., Vasserman, A.A., and Nedostup, V.I., Teplofizicheskie svoistva neona, argona, kriptona i ksenona (Thermophysical Properties of Neon, Argon, Krypton and Xenon), Moscow: Izd. Standartov, 1976.

    Google Scholar 

  23. Sanditov, D.S., Tsydypov, Sh.B., and Parfenov, A.N., A study of the vitrification of argon by the molecular dynamics method, Russ. J. Phys. Chem. A, 2005, vol. 79, no. 9, pp. 1464–1467.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. B. Tsydypov.

Additional information

Original Russian Text © Sh.B. Tsydypov, E.I. German, V.N. Parfenov, 2017, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsydypov, S.B., German, E.I. & Parfenov, V.N. Simulation of the molecular dynamics of the evolution of argon structural characteristics in the area of glass transition. Glass Phys Chem 43, 43–47 (2017). https://doi.org/10.1134/S1087659617010175

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659617010175

Keywords

Navigation