Skip to main content
Log in

Optimization of the properties of cathode materials based on lithium manganese silicate compounds using computer simulation

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Using the method of crystallochemical analysis (the TOPOS program package), the 14 most promising and stable structures of lithium manganese (iron) silicate compounds have been selected based on the data on 132 experimentally received and predicted compounds (Materials Project resource).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andre, D., Kim, S.J., Lamp, P., Lux, S.F., Maglia, F., Paschos, O., and Stiaszny, B., Future generations of cathode materials: an automotive industry perspective, J. Mater. Chem. A, 2015, vol. 3, no. 13, pp. 6709–6732.

    Article  Google Scholar 

  2. Kovalenko, A.S., Shilova, O.A., Morozova, L.V., et al., Features of the synthesis and the study of nanocrystalline cobalt-nickel spinel, Glass Phys. Chem., 2014, vol. 40, no. 1, pp. 106–113.

    Article  Google Scholar 

  3. Shilova, O.A., Antipov, V.N., Tikhonov, P.A., et al., Ceramic nanocomposites based on oxides of transition metals for ionistors, Glass Phys. Chem., 2013, vol. 39, no. 5, pp. 570–578.

    Article  Google Scholar 

  4. Morozova, L.V., Kalinina, M.V., Koval’ko, N.Yu., et al., Preparation of zirconia-based nanoceramics with a high degree of tetragonality, Glass Phys. Chem., 2014, vol. 40, no. 3, pp. 352–355.

    Article  Google Scholar 

  5. Kalinina, M.V., Morozova, L.V., Khlamov, I.I., et al., Synthesis and investigation of nanoceramics based on cobalt metaniobate, Glass Phys. Chem., 2014, vol. 40, no. 5, pp. 578–563.

    Article  Google Scholar 

  6. Shmigel’, A.V., Tikhonov, P.A._Lapshin, A.E., et al., Electrochemical preparation of nanoparticles of nickel hydroxide and prediction of its capacity properties, Glass Phys. Chem., 2015, vol. 41, no. 6, pp. 656–659.

    Article  Google Scholar 

  7. Moshnikov, V.A., Gracheva, I.E., and An’chkov, M.G., Investigation of sol-gel derived nanomaterials with a hierarchical structure, Glass Phys. Chem., 2011, vol. 37, no. 5, pp. 485–495.

    Article  Google Scholar 

  8. Babayan, V., Kazantseva, N.E., Moucka, R., Spivak, Yu.M., and Moshnikov, V.A., Combined effect of demagnetizing field and induced magnetic anisotropy on the magnetic properties of manganesezinc ferrite composites, J. Magn. Magn. Mater., 2012, vol. 324, no. 2, pp. 161–172.

    Article  Google Scholar 

  9. Kalinina, M.V., Moshnikov, V.A., Tikhonov, P.A., Tomaev, V.V., and Mikhailichenko, S.V., Temperature dependence of the resistivity for metal-oxide semiconductors based on tin dioxide, Glass Phys. Chem., 2003, vol. 29, no. 4, pp. 422–427.

    Article  Google Scholar 

  10. Arsent’ev, M.Yu., Kalinina, M.V., Egorova, T.L., and Prikhod’ko, A.V., Method of crystal chemical analysis and electron density functional theory for analysis of ion conductivity in inorganic compounds with complex topological parameters, Molod. Uchen., 2014, no. 17, pp. 26–29.

    Google Scholar 

  11. Arsent’ev, M.Yu., Tikhonov, P.A., Kalinina, M.V., Egorova, T.L., and Shmigel’, A.V., Computer modelling methods for predicting performance of cathode materials for lithium-ion batteries, Fiz.-Khim. Asp. Izuchen. Klasterov, Nanostrukt. Nanomater., 2014, no. 6, pp. 22–28.

    Google Scholar 

  12. Saracibar, A. and van der Ven, A., and Arroyo-de Dompablo, M.E., Crystal structure, energetics, and electrochemistry of Li2FeSiO4 polymorphs from first principles calculations, Chem. Mater., 2012, vol. 24, no. 3, p. 495–503.

    Article  Google Scholar 

  13. Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., et al., Commentary: The materials project: A materials genome approach to accelerating materials innovation, APL Mater., 2013, vol. 1, no. 1, p. 011002.

    Article  Google Scholar 

  14. Blatov, V.A., Multipurpose crystallochemical analysis with the program package TOPOS, IUCr CompComm Newslett., 2006, vol. 7, pp. 4–38.

    Google Scholar 

  15. Lee, H., Park, S.D., Moon, J., Lee, H., Cho, K., Cho, M., and Kim, S.Y., Origin of poor cyclability in Li2MnSiO4 from first-principles calculations: Layer exfoliation and unstable cycled structure, Chem. Mater., 2014, vol. 26, no. 13, pp. 3896–3899.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Tikhonov.

Additional information

Original Russian Text © M.Yu. Arsent’ev, N.Yu. Koval’ko, P.A. Tikhonov, M.V. Kalinina, 2017, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsent’ev, M.Y., Koval’ko, N.Y., Tikhonov, P.A. et al. Optimization of the properties of cathode materials based on lithium manganese silicate compounds using computer simulation. Glass Phys Chem 43, 106–110 (2017). https://doi.org/10.1134/S1087659617010023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659617010023

Keywords

Navigation