Skip to main content
Log in

Conversion of two-micron radiation into visible light using glass and ceramics based on ZBLAN: Но3+ and ZBLAN: Ho3+ + Yb3+

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Visualization of infrared radiation of Tm:YLF-laser at the wavelength of 1908 nm has been investigated in the glass and ceramics samples with compositions of 53ZrF4 · 20 BaF2 · 1HoF3 · 3YbF3 · 3AlF3 · 20NaF and 53ZrF4 · 20BaF2 · 3LaF3 · 1HoF3 · 3AlF3 · 20NaF (mol %). In luminescence spectra of ZBLAN samples doped with Но3+, the bands at the wavelengths of 480, 540, and 650 nm were observed, which correspond to 5 F 35 I 8, 5 S 2, 5 F 45 I 8, and 5 F 55 I 8 electron transitions in Но3+ ions with the maximum intensity of the red band (650 nm). Occupancy of the 5 S 2 and 5 F 4 levels in the ZBLAN: 1% Но3+ samples is related to the sequential absorption of the exciting radiation quanta. The level of 5 F 5 is filled mainly due to the ionic interaction. Additional doping with the Yb3+ ions led to the change of the luminescence color to green and a decrease in the threshold radiation power density of the Tm:YLF-laser in ceramic samples up to 2 W/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ovsyankin, V.V. and Feofilov, P.P., Cooperative luminescence sensitization in crystals doped with rare-earth ions, Pis’ma Zh. Exp. Tekh. Fiz., 1966, vol. 4, no. 11, pp. 471–473.

    Google Scholar 

  2. Auzel, F., Compteur qantique par transfer d’energie enter deux ions de terres rars dans un tugstate mixte et dans un verre, C. R. Seances Acad. Sci., Ser. B, 1966, vol. 262, pp. 1016–1019.

    Google Scholar 

  3. Wang, J., Vogel, E., and Snitzer, E., Tellurite glass: a new candidate for fiber devices, Opt. Mater., 1994, vol. 3, pp. 187–203.

    Article  Google Scholar 

  4. Qiu, J., Mukai, A., Makishim, A., and Kawamoto, Y., Efficient blue up-conversion luminescence of Tm3+ ions in transparent oxyfluoride glass ceramics containing PbxCd1 - x F2 nanocrystals, J. Phys.: Condens. Mater., 2002, vol. 14, pp. 13827–13834.

    Google Scholar 

  5. Lemanski, K., Pazik, R., and Deren, P.J., Efficient upconversion emission and energy transfer in LaAlO3 doped with Er3+,Ho3+,and Yb3+ ions, Opt. Mater., 2012, vol. 34, pp. 1990–1993.

    Article  Google Scholar 

  6. Ozel’, F.E., Materials and devices using doublepumped phosphors energy transfer, Proc. IEEE, 1973, vol. 61, no. 6, pp. 758–786.

    Article  Google Scholar 

  7. Kazarian, A.K., Timofeev, Yu.P., and Fok, M.V., Anti-Stokes conversion of radiation in phosphors with rare earth ions, Tr. Fiz. Inst. Akad. Nauk, 1986, vol. 175, pp. 4–65.

    Google Scholar 

  8. Wnuk, A., Kaczkan, M., Frukacz, Z., Pracka, I., Chadeyron, G., Joubert, M.-F., and Malinowski, M., Infra-red to visible up-conversion in holmium-doped materials, J. Alloy Compd., 2002, vol. 341, pp. 353–357.

    Article  Google Scholar 

  9. Lin, H., Chen, D., Yu, Y., Shan, Zh., Huang, P., Wang, Y., and Yuan, J., Nd3+-sensitized upconversion white light emißsion of Tm3+/Ho3+ bridged by Yb3+ in ß-YF3 nanocrystals embedded transparent glass ceramics, J. Appl. Phys., 2010, vol. 107, p. 103511. doi 10.1063/1.3372750

    Article  Google Scholar 

  10. Kaplan, I., Aravot, D., Giler, S., Gat, Y., Sagie, D., and Kagan, Y., The clinical potential of the Holmium laser, in Laser Optoelectronics in Medicine, Berlin: Springer, 1988, pp. 23–26.

  11. Brinkmann, R., Knipper, A., Dröge, G., Miller, A., Gromoll, B., and Birngruber, R. Ureterotomy with a pulsed Holmium laser, in Laser in der Medizin/in Medicine, Berlin: Springer, 1996, pp. 16–19.

  12. Wenk, S., Furst, S., Danicke, V., and Kunde, D.Th., Design and technical concept of a Tm laser scalpel for clinical investigation based on a 60 W, 1.92 µm Tm fiber laser system, in Advances in Medical Engineering, vol. 114, Buzug, T.M., Holz, V, Bongartz, J., Kohl-Bareis, M., Hartmann, U., and Weber, S., Eds., Berlin: Springer, 2007.

    Google Scholar 

  13. Walsh, B.M., Review of Tm and Ho materials; spectroscopy and lasers, Laser Phys., 2009, vol. 19, no. 4, pp. 855–866.

    Article  Google Scholar 

  14. Guhur, A. and Jackson, S.D., Efficient holmiumdoped fluoride fiber laser emitting 2.1 µm and blue upconversion fluorescence upon excitation at 2 µm, Opt. Express, 2010, vol. 18, no. 19, pp. 20164–20169.

    Article  Google Scholar 

  15. Lyapin, A.A., Ryabochkina, P.A., Ushakov, S.N., and Fedorov, P.P., Visualiser of two-micron laser radiation based on Ho:CaF2 crystals, Quantum Electron., 2014, vol. 44, no. 6, pp. 602–605.

    Article  Google Scholar 

  16. Duclos, F. and Urquhart, P., Thulium-doped ZBLAN blue upconversion fiber laser: Theory, J. Opt. Soc. Am. B, 1995, vol. 12, no. 4, pp. 709–717.

    Article  Google Scholar 

  17. Sanders, S., Waarts, R.G., Mehuys, D.G., and Welch, D.F., Laser diode pumped 106 mW blue upconversion fiber laser, Appl. Phys. Lett., 1995, vol. 67, no. 13, pp. 1815–1817.

    Article  Google Scholar 

  18. Bol’shchikov, F.A., Garibin, E.A., Gusev, P.E., Demidenko, A.A., Kruglova, M.V., Krutov, M.A., and Fedorov, P.P., Nanostructured Tm:CaF2 ceramics: Potential gain media for two micron lasers, Quantum Electron., 2011, vol. 41, no. 3, pp. 193–197.

    Article  Google Scholar 

  19. Aasland, S. and Grande, T., Crystallization of ZBLAN glass, J. Am. Ceram. Soc., 1996, vol. 79, no. 8, pp. 2205–2206.

    Article  Google Scholar 

  20. Santos, F.A., Delben, J.R.J., Delben, A.A.S.T., Andrade, L.H.C., and Lima, S.M., Thermal stability and crystallization behavior of TiO2 doped ZBLAN glasses, J. Non-Cryst. Solids, 2011, vol. 357, no. 15, pp. 2907–2910.

    Article  Google Scholar 

  21. Qin, L., Shen, Z.X., Low, B.L., Lee, H.K., Lu, T.J., Dai, Y.S., Tang, S.H., and Kuok, M.H., Crystallization study of heavy metal fluoride glasses ZBLAN by Raman spectroscopy, J. Raman Spectrosc., 1997, vol. 28, no. 7, pp. 495–499.

    Article  Google Scholar 

  22. Alvarez, C.J., Liu, Y., Leonard, R.L., Johnson, J.A., and Petford-Long, A.K., Nanocrystallization in fluorochlorozirconate glass–ceramics, J. Am. Ceram. Soc., 2013, vol. 96, no. 11, pp. 3617–3621.

    Article  Google Scholar 

  23. Tanimura, K., Shin, M.D., and Sibley, W.A., Optical trasitions of Ho3+ ions in fluorozirconate glass, Phys. Rev. B: Condens. Matter Mater. Phys., 1984, vol. 30, no. 5, pp. 2429–2436.

    Article  Google Scholar 

  24. Wetenkamp, L., West, G.F., and Tobben, H., Optical properties of rare earth-doped ZBLAN glasses, J. Non-Cryst. Solids, 1992, vol. 140, pp. 35–40.

    Article  Google Scholar 

  25. Auzel, F., Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions, Phys. Rev. B: Solid State, 1976, vol. 13, pp. 2809–2817.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Budruev.

Additional information

Original Russian Text © A.P. Savikin, A.S. Egorov, A.V. Budruev, I.A. Grishin, 2016, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savikin, A.P., Egorov, A.S., Budruev, A.V. et al. Conversion of two-micron radiation into visible light using glass and ceramics based on ZBLAN: Но3+ and ZBLAN: Ho3+ + Yb3+ . Glass Phys Chem 42, 473–479 (2016). https://doi.org/10.1134/S108765961605014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765961605014X

Keywords

Navigation