Skip to main content
Log in

Enhanced photoelectrochemical water splitting efficiency: Increasing the photo anode’s properties by doping on the fluorine doped tin oxide glass surface

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The recent accomplishments in using Sn or Ge, Mn and Ti-doped hematite photoanodes for solar water splitting are highlighted in this paper. Magnetron sputtering and hydrothermal methods were applied for depositing the alloyed films on Fluorine doped Tin Oxide (FTO) glasses. Results were compered by structural and morphology analysis using scanning electronic microscopy (SEM) images and XRD. Similarly, a comparison was done by using optical properties and photocatalytic activities. Doping elements for all samples illustrated higher photocurrent density to compare un-doped hematite. This research confirms that doped elements enhance the charge carriers and reduce the recombination losses, and it emphasizes that these treatment results in better photoelectrochemistry performance of Fe2O3 nanostructured photoanodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mao, S.S. and Shen, S., Hydrogen production: catalysing artificial photosynthesis, Nat. Photonics, 2013, vol. 7, pp. 944–946.

    Article  Google Scholar 

  2. Fujishima, A. and Honda, K., Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, vol. 238, pp. 37–38.

    Article  Google Scholar 

  3. Sun, K., Shen, S., Liang, Y., Burrows, P.E., Mao, S.S., and Wang, D., Enabling silicon for solar-fuel production, Chem. Rev., 2014, vol. 14, pp. 8662–8719.

    Article  Google Scholar 

  4. Murphy, A.B., Barnes, P.R.F., Randeniya, L.I.K., Plumb, I.C., Grey, I.E., Horne, M.D., and Glasscock, J.A., Efficiency of solar water splitting using semiconductor electrodes, Int. J. Hydrogen Energy, 2006, vol. 31, pp. 1999–2017.

    Article  Google Scholar 

  5. Azad, A., Kang, W., and Kim, S.J., Preparation and photoelectrochemical properties of Fe2O3–TiO2 based photoanode for water splitting, in Manufacturing Nanostructures, Waqar, A. and Nasar, A., Eds., One Central Press, UK, 2014, Ch. 3, pp. 79–107.

    Google Scholar 

  6. Yang, T.Y., Kang, H.Y., Sim, U., Lee, Y.J., Lee, J.H., Koo, B., Nam, K.T., and Joo, Y.C., A new hematite photoanode doping strategy for solar water splitting: oxygen vacancy generation, Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 2117–2124.

    Article  Google Scholar 

  7. Azad, A., Noh, E., Yun, K.S., Jeong, H.J., Jung, S.C., Kang, W.S., Moc, N.T., and Kim, S.J., Effect of doping of Fe into TiO2 layer in Fe2O3–TiO2–FTO system for high performance of water splitting, Adv. Sci. Technol. (Faenza, Italy), 2014, vol. 93, pp. 82–89.

    Article  Google Scholar 

  8. Sivula, K., Zboril, R., Le Formal, F., Robert, R., Weidenkaff, A., Tucek, J., Frydrych, J., and Grätzel, M., Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach, J. Am. Chem. Soc., 2010, vol. 132, pp. 7436–7444.

    Article  Google Scholar 

  9. Zhen, C., Wang, L., Liu, L., Liu, G., Lu, G.Q., and Cheng, H.-M., Nonstoichiometric rutile TiO2 photoelectrodes for improved photoelectrochemical water splitting, Chem. Commun., 2013, vol. 49, pp. 6191–6193.

    Article  Google Scholar 

  10. Pu, Y.C., Wang, G., Chang, K.D., Ling, Y., Lin, Y.K., Fitzmorris, B.C., Liu, C.M., Lu, X., Tong, Y., Zhang, J.Z., Hsu, Y.J., and Li, Y., Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting, Nano Lett., 2013, vol. 13, pp. 3817–3823.

    Article  Google Scholar 

  11. Wang, G., Ling, Y., Wang, H., Yang, X., Wang, C., Zhang, J.Z., and Li, Y., Hydrogen-treated WO3 nanoflakes show enhanced photostability, Energy Environ. Sci., 2012, vol. 5, pp. 6180–6187.

    Article  Google Scholar 

  12. Park, H.S., Lee, H.C., Leonard, K.C., Liu, G., and Bard, A.J., Unbiased photoelectrochemical water splitting in Z-scheme device using W/Mo-doped BiVO4 and Zn(x)Cd(1–x)Se, ChemPhysChem, 2013, vol. 14, pp. 2277–2287.

    Article  Google Scholar 

  13. Lin, Y., Zhou, S., Sheehan, S.W., and Wang, D., Nanonet-based hematite heteronanostructures for efficient solar water splitting, J. Am. Chem. Soc., 2011, vol. 133, pp. 2398–2401.

    Article  Google Scholar 

  14. Mulmudi, H.K., Mathews, N., Dou, X.C., Xi, L.F., Pramana, S.S., Lam, Y.M., and Mhaisalkar, S.G., Controlled growth of hematite (α-Fe2O3) nanorod array on fluorine doped tin oxide: synthesis and photoelectrochemical properties, Electrochem. Commun., 2011, vol. 13, pp. 951–954.

    Article  Google Scholar 

  15. Launay, J.C. and Horowitz, G., Crystal growth and photoelectrochemical study of Zr-doped α-Fe2O3 single crystal, J. Cryst. Growth, 1982, vol. 57, pp. 118–124.

    Article  Google Scholar 

  16. Kennedy, J.H. and Frese, K.W., Photooxidation of water at α-Fe2O3 electrodes, J. Electrochem. Soc., 1978, vol. 125, pp. 709–714.

    Article  Google Scholar 

  17. Ling, Y., Wang, G., Wheeler, D.A., Zhang, J.Z., and Li, Y., Sn-Doped hematite nanostructures for photoelectrochemical water splitting, Nano Lett., 2011, vol. 11, pp. 2119–2125.

    Article  Google Scholar 

  18. Morrish, R., Rahman, M., MacElroy, J.M.D., and Woldon, C.A., Activation of hematite nanorod arrays for photoelectrochemical water splitting, ChemSus-Chem, 2011, vol. 4, pp. 474–479.

    Article  Google Scholar 

  19. Van de Krol, R., Liang, Y., and Schoonman, J., Solar hydrogen production with nanostructured metal oxides, J. Mater. Chem., 2008, vol. 18, pp. 2311–2320.

    Article  Google Scholar 

  20. Glasscock, J.A., Barnes, P.R.F., Plumb, I.C., and Savvides, N., Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si, J. Phys. Chem. C, 2007, vol. 111, pp. 16477–16488.

    Article  Google Scholar 

  21. Mayer, M.T., Du, C., and Wang, D., Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials, J. Am. Chem. Soc., 2012, vol. 134, pp. 12406–12409.

    Article  Google Scholar 

  22. Le Formal, F., Sivula, K., and Grätzel, M., The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments, J. Phys. Chem. C, 2012, vol. 116, pp. 26707–26720.

    Article  Google Scholar 

  23. Zhang, M., Luo, W., Li, Z., Yu, T., and Zou, Z., Improved photoelectrochemical responses of Si and Ti codoped α-Fe2O3 photoanode films, Appl. Phys. Lett., 2010, vol. 97, 042105. doi 10.1063/1.3470109

    Article  Google Scholar 

  24. Maeda, K., Teramura, K., Lu, D., Takata, T., Saito, N., Inoue, Y., and Domen, K., Photocatalyst releasing hydrogen from water, Nature, 2006, vol. 440, p. 295.

    Article  Google Scholar 

  25. Varghese, O.K., Paulose, M., LaTempa, T.J., and Grimes, C.A., High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels, Nano Lett., 2009, vol. 9, pp. 731–737.

    Article  Google Scholar 

  26. Chen, X. and Mao, S.S., Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev., 2007, vol. 107, pp. 2891–2959.

    Google Scholar 

  27. Ohmori, T., Takahashi, H., Mametsuka, H., and Suzuki, E., Photocatalytic oxygen evolution on α-Fe2O3 films using Fe3+ ion as a sacrificial oxidizing agent, Phys. Chem. Chem. Phys., 2000, vol. 2, pp. 3519–3522.

    Article  Google Scholar 

  28. Ling, Y. and Li, Y., Review of Sn-doped hematite nanostructures for photoelectrochemical water splitting, Part. Part. Syst. Charact., 2014, vol. 31, pp. 1113–1121.

    Article  Google Scholar 

  29. Bohn, C.D., Agrawal, A.K., Walter, E.C., Vaudin, M.D., Herzing, A.A., Haney, P.M., Talin, A.A., and Szalai, V.A., Effect of tin doping on α-Fe2O3 photoanodes for water splitting, J. Phys. Chem. C, 2012, vol. 116, pp. 15290–15296.

    Article  Google Scholar 

  30. Sivula, K., Le Formal, F., and Grätzel, M., Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes, ChemSusChem, 2011, vol. 4, pp. 432–449.

    Article  Google Scholar 

  31. Sing, G., Chiam, Y., Kumar, M.H., Bassi, P.S., Seng, H.L., Barber, J., and Wong, L.H., Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese, ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 5852–5859.

    Article  Google Scholar 

  32. Liao, P. and Carter, E.A., Hole transport in pure and doped hematite, J. Appl. Phys., 2012, vol. 112, 013701. doi 10.1063/1.4730634

    Article  Google Scholar 

  33. Balko, B.A. and Clarkson, K.M., The effect of doping with Ti(IV) and Sn(IV) on oxygen reduction at hematite electrodes, J. Electrochem. Soc., 2001, vol. 148, pp. E85–E91.

    Article  Google Scholar 

  34. Hiralal, P., Saremi-Yarahmadi, S., Bayer, B.C., Wang, H., Hofmann, S., Upul Wijayantha, K.G., Amaratunga, G.A.J., Nanostructured hematite photoelectrochemical electrodes prepared by the low temperature thermal oxidation of iron, Sol. Energy Mater. Sol. Cells, 2011, vol. 95, pp. 1819–1825.

    Article  Google Scholar 

  35. Chernomordik, B.D., Russell, H.B., Cvelbar, U., Jasinski, J.B., Kumar, V., Deutsch, T., and Sunkara, M.K., Photoelectrochemical activity of asgrown,α-Fe2O3 nanowire array electrodes for water splitting, Nanotecnology, 2012, vol. 23, 194009. doi 10.1088/0957-4484/23/19/194009

    Article  Google Scholar 

  36. Vincent, T., Gross, M., Dotan, H., and Rothschild, A., Thermally oxidized iron oxide nanoarchitectures for hydrogen production by solar-induced water splitting, Int. J. Hydrogen Energy, 2012, vol. 37, pp. 8102–8109.

    Article  Google Scholar 

  37. Yang, B., Qin, G., Pei, W., Li, S., Ren, Y., and Ishio, S., Effect of phosphor addition on intergranular exchange coupling of Co–Pt thin films, J. Mater. Sci. Technol., 2011, vol. 27, pp. 398–402.

    Article  Google Scholar 

  38. Li, S., Cai, J., Mei, Y., Ren, Y., and Qin, G., Thermal oxidation preparation of doped hematite thin films for photoelectrochemical water splitting, Int. J. Photoenergy, 2014, pp. 794370–794376. doi 10.1155/2014/794370

    Google Scholar 

  39. Deng, J., Zhong, J., Pu, A., Zhang, D., Li, M., Sun, X., and Lee, S.T., Ti-doped hematite nanostructures for solar water splitting with high efficiency, J. Appl. Phys., 2012, vol. 112, p. 084312. doi 10.1063/1.4759278

    Article  Google Scholar 

  40. Wen, X., Wang, S., Ding, Y., Lin Wang, Z., and Yang, S., Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires, J. Phys. Chem. B, 2005, vol. 109, pp. 215–220.

    Article  Google Scholar 

  41. Wei, Q., Zhang, Z., Li, Z., Zhou, Q., and Zhu, Y., Enhanced photocatalytic activity of porous α-Fe2O3 films prepared by rapid thermal oxidation, J. Phys. D, 2008, vol. 41, no. 20, p. 20002. doi 10.1088/0022-3727/41/20/202002

    Article  Google Scholar 

  42. Prabhakar, R.R., Mathews, N., Jinesh, K.B., Karthik, K.R.G., Pramana, S.S., Varghese, B., Sow, C.H., and Mhaisalkar, S., Efficient multispectral photodetection using Mn doped ZnO nanowires, J. Mater. Chem., 2012, vol. 22, pp. 9678–9683.

    Article  Google Scholar 

  43. Dotan, H., Sivula, K., Gratzel, M., Rothschild, A., and Warren, S.C., Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger, Energy Environ. Sci., 2011, vol. 4, pp. 958–964.

    Article  Google Scholar 

  44. Zhang, H., Chen, G., and Bahnemann, D.W., Photoelectrocatalytic materials for environmental applications, J. Mater. Chem., 2009, vol. 19, pp. 5089–5121.

    Article  Google Scholar 

  45. Zhang, X. and Zhang, L., Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping: The case of BiOI, J. Phys. Chem. C, 2010, vol. 114, pp. 18198–18206.

    Article  Google Scholar 

  46. Gassenbauer, Y. and Klein, A., Electronic and chemical properties of tin-doped indium oxide (ITO) surfaces and ITO/ZnPc interfaces studied in-situ by photoelectron spectroscopy, J. Phys. Chem. B, 2006, vol. 110, pp. 4793–4801.

    Article  Google Scholar 

  47. Greiner, M.T. and Lu, Z.H., Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces, NPG Asia Mater., 2013, vol. 5, p. e55. doi 10.1038/am.2013.29

    Article  Google Scholar 

  48. Sieber, K.D., Sanchez, C., Turner, J.E., and Somorjai, G.A., Preparation, characterization and photoelectronic properties of germanium-substituted Fe2O3 single crystals, J. Chem. Soc., Faraday Trans., 1985, vol. 81, pp. 1263–1274.

    Article  Google Scholar 

  49. Liao, P., Toroker, M.C., and Carter, E.A., Electron transport in pure and doped hematite, Nano Lett., 2011, vol. 11, pp. 1775–1781.

    Article  Google Scholar 

  50. Jiang, J.Z., Lin, R., Nielsen, K., Mørup, S., Rickerby, D.G., and Clasen, R., Interstitial positions of tin ions in α-(FerichSn)2O3 solid solutions prepared by mechanical alloying, Phys. Rev. B: Condens. Matter Mater. Phys., 1997, vol. 55, pp. 14830–14835.

    Article  Google Scholar 

  51. Sorescu, M., Diamandescu, L., Tarabasanu-Mihaila, D., Teodorescu, V.S., and Howard, B.H., Hydrothermal synthesis and structural characterization of (1–x)α-Fe2O3–xSnO2 nanoparticles, J. Phys. Chem. Solids, 2004, vol. 65, pp. 1021–1029.

    Article  Google Scholar 

  52. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J., and Hamann, T.W., Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co–Pi”-coated hematite electrodes, J. Am. Chem. Soc., 2012, vol. 134, pp. 16693–16700.

    Article  Google Scholar 

  53. Shimizu, K., Lasia, A., and Boily, J.F., Electrochemical impedance study of the hematite/water interface, Langmuir, 2012, vol. 28, pp. 7914–7920.

    Article  Google Scholar 

  54. Aroutiounian, V.M., Arakelyan, V.M., Shahnazaryan, G.E., Hovhannisyan, H.R., Wang, H., and Turner, J.A., Photoelectrochemistry of tin-doped iron oxide electrodes, Solar Energy, 2007, vol. 81, pp. 1369–1376.

    Article  Google Scholar 

  55. Sanchez, H.L., Steinfink, H., and White, H.S., Solid solubility of Ge, Si, and Mg in Fe2O3 and photoelectric behavior, J. Solid State Chem., 1982, vol. 41, pp. 90–96.

    Article  Google Scholar 

  56. Tilley, S.D., Cornuz, M., Sivula, K., and Gratzel, M., Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis, Angew. Chem., Int. Ed., 2010, vol. 49, pp. 6405–6408.

    Article  Google Scholar 

  57. Wang, G.M., Li, Y.C., Wheeler, D.A., George, K.E.N., Horsley, K., Heske, C., Zhang, J.Z., and Li, Y., Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation, Nano Lett., 2011, vol. 11, pp. 3503–3509.

    Article  Google Scholar 

  58. Jang, J.S., Lee, J., Ye, H., Fan, F.R.F., and Bard, A.J., Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties, J. Phys. Chem. C, 2009, vol. 113, pp. 6719–6724.

    Article  Google Scholar 

  59. Tauc, J., Grigorovici, R., and Vancu, A., Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B, 1966, vol. 15, pp. 627–637.

    Article  Google Scholar 

  60. Bryan, J.D. and Gamelin, D.R., Doped semiconductor nanocrystals: Synthesis, characterization, physical properties, and applications, in Progress in Inorganic Chemistry, Karlin, K.D., Ed., Seattle: Univ. Washington, 2005, vol. 54, pp. 47–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Jae Kim.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azad, A., Kim, SJ. Enhanced photoelectrochemical water splitting efficiency: Increasing the photo anode’s properties by doping on the fluorine doped tin oxide glass surface. Glass Phys Chem 42, 458–472 (2016). https://doi.org/10.1134/S1087659616050023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659616050023

Keywords

Navigation