Skip to main content
Log in

Synthesis and study of mesoporous xerogels and nanopowders of a metastable solid solution 97ZrO2–3Y2O3 for the fabrication of catalyst substrates

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The—technology of the liquid-phase synthesis of metastable phases in the ZrO2–Y2O3 system has been developed. Mesoporous xerogels with the specific surface area of ~350 m2/g and monophase nanopowders (5–10 nm) of the tetragonal solid solution (ZrO2)0.97(Y2O3)0.03 have been obtained and their structural peculiarities have been revealed. The efficiency of the suggested technology and good prospects of the synthesized ZrO2-based precursors in creating catalysts’ substrates have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguila, G., Gracia, F., and Araya, P., of COat low temperature, Appl. Catal., A, 2008, vol. 343, no. 1, pp. 16–24.

    Article  Google Scholar 

  2. Demidov, D.V., Sakharovskii, Yu.A., and Rozenkevich, M.B., Nickel–zirconium catalysts for producing synthesis gas by steam methane reforming of carbon dioxide, Usp. Khim. Khim. Tekhnol., 2012, vol. 136, no. 7, pp. 63–68.

    Google Scholar 

  3. Ivanova, A.S., Highly dispersed zirconium-containing oxide systems: synthesis, properties, and applications, Kinet. Catal., 2001, vol. 42, no. 3, pp. 354–365.

    Article  Google Scholar 

  4. Antsiferov, V.N., Porozova, S.E., Solnyshkov, I.V., et al., The influence of zirconia on the properties of nickel catalysts for oxidative conversion of methane, Perspekt. Mater., 2013, no. 11, pp. 65–70.

    Google Scholar 

  5. Galanov, S.I. and Sidorova, O.I., Effect of a precursor on the phase composition and particle size of the active component of Ni–ZrO2 catalytic systems for the oxidation of methane into syngas, Russ. J. Phys. Chem. A, 2014, vol. 88, no. 10, pp. 1629–1636.

    Article  Google Scholar 

  6. Panova, T.I., Morozova, L.V., and Polyakova, I.G., Synthesis and investigation of properties of nanocrystalline dioxides zirconia and hafnia, Glass Phys. Chem., 2011, vol. 37, no. 2, pp. 238–249.

    Article  Google Scholar 

  7. Panova, T.I., Morozova, L.V., and Polyakova, I.G., Synthesis and investigation of properties of nanocrystalline dioxides zirconia and hafnia, Glass Phys. Chem., 2011, vol. 37, no. 2, pp. 179–187.

    Article  Google Scholar 

  8. Panova, T.I., Arsent’ev, M.Yu., Morozova, L.V., and Drozdova, I.A., Synthesis and investigation of the structure of ceramic nanopowders in the ZrO2–CeO2–Al2O3 system, Glass Phys. Chem., 2010, vol. 36, no. 4, pp. 470–477.

    Article  Google Scholar 

  9. Duran, P., Villegas, M., and Capel, F., Low-temperature sintering and microstructural development of nanocrystalline Y-TZP powder, J. Eur. Ceram. Soc., 1996, vol. 16, no. 9, pp. 945–952.

    Article  Google Scholar 

  10. Vasserman, I.M., Khimicheskoe osazhdenie iz rastvorov (Chemical Precipitation from Solutions), Leningrad: Khimiya, 1980.

    Google Scholar 

  11. Doroshkevich, A.S., Danilenko, I.A., Konstantinova, T.E., et al., Formation of nanocrystalline particles in the system of ZrO2–3 mol % Y2O3, Fiz. Tekh. Vys. Davlenii, 2002, vol. 12, no. 3, pp. 38–47.

    Google Scholar 

  12. Generalov, M.B., Kriokhimicheskaya nanotekhnologiya (Cryochemical Nanotechnology), Moscow: Akademkniga, 2006.

    Google Scholar 

  13. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity, New York: Academic, 1982.

    Google Scholar 

  14. Kopitsa, G.P., Ivanov, V.K., Grigor’ev, S.V., et al., Mesostructure of xerogels of hydrated zirconium dioxide, JETP Lett., 2007, vol. 85, no. 2, pp. 122–126.

    Article  Google Scholar 

  15. Stenina, I.A., Voropaeva, E.Yu., Veresov, A.G., et al., Effect of precipitation pH and heat treatment on the properties of hydrous zirconium dioxide, Russ. J. Inorg. Chem., 2008, vol. 53, no. 3, pp. 350–356.

    Article  Google Scholar 

  16. Kofstad, P., Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, New York: Wiley, 1972.

    Google Scholar 

  17. Kuznetsova, T.G. and Sadykov, V.A., Specific features of the defect structure of metastable nanodisperse ceria, zirconia, and related materials, Kinet. Catal., 2008, vol. 49, no. 6, pp. 840–858.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Morozova.

Additional information

Original Russian Text © L.V. Morozova, M.V. Kalinina, T.I. Panova, M.Yu. Arsent’ev, T.V. Khamova, I.A. Drozdova, O.A. Shilova, 2016, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, L.V., Kalinina, M.V., Panova, T.I. et al. Synthesis and study of mesoporous xerogels and nanopowders of a metastable solid solution 97ZrO2–3Y2O3 for the fabrication of catalyst substrates. Glass Phys Chem 42, 277–283 (2016). https://doi.org/10.1134/S108765961603010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765961603010X

Keywords

Navigation