Skip to main content
Log in

Effect of the synthesis conditions on the properties of polycrystalline films of lead zirconate titanate of nonstoichiometric composition

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The model representations of the formation of the internal fields at the grain boundaries in polycrystalline lead zirconate titanate (PZT) films are discussed. According to the model proposed, the local distortion of the stoichiometric composition of the PZT films caused by the segregation of the oxygen and lead ions from the bulk PZT grains towards their boundaries during high-temperature annealing gives rise to electrical double layers near the grain boundaries and fixes the polarization in these areas. As a result, the ferroelectric polarization that can be switched by the electric field in polycrystalline PZT films decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Physics of Ferroelectrics: A Modern Perspective, Rabe, K.M., Ahn, Ch.H., and Triscon, J.-M., Eds., Berlin: Springer, 2007.

  2. Vorotilov, K.A., Mukhortov, V.M., and Sigov, A.S., Integrirovannye segnetoelektricheskie ustroistva (Integrated Ferroelectric Devices), Sigov, A.S., Ed., Moscow: Energoatomizdat, 2011.

  3. Tagantsev, A.K., Stolichnov, I., Setter, N., and Cross, J.S., Nature of non-linear imprint in ferroelectric films and long-term prediction of polarization loss in ferroelectric memories, J. Appl. Phys., 2004, vol. 96, pp. 6616–6623.

    Article  Google Scholar 

  4. Tagantsev, A.K. and Gerra, G., Interface-induced phenomena in polarization response of ferroelectric thin films, J. Appl. Phys., 2006, vol. 100, 051607.

    Article  Google Scholar 

  5. Tentilova, I.Yu., Kukushkin, S.A., Kaptelov, E.Yu., et al., Peculiarities of crystallization of thin ferroelectric films of lead zirconate titanate, Tech. Phys. Lett., 2011, vol. 37, no. 2, pp. 163–165.

    Article  Google Scholar 

  6. Pronin, V.P., Senkevich, S.V., Kaptelov, E.Yu., and Pronin, I.P., Anomalous losses of lead in crystallization of the perovskite phase in thin PZT films, Phys. Solid State, 2013, vol. 55, no. 1, pp. 105–108.

    Article  Google Scholar 

  7. Sigov, A.S., Vorotilov, K.A., and Zhigalina, O.M., Effect of lead content on microstructure of sol–gel PZT structures, Ferroelectrics, 2012, vol. 433, no. 1, pp. 146–157.

    Article  Google Scholar 

  8. Mukhin, N.V., Diffusion model of intrinsic defects in lead zirconate titanate films on heat treatment in air, Glass Phys. Chem., 2014, vol. 40, no. 2, pp. 238–242.

    Article  Google Scholar 

  9. Petrov, A.A., Geterofaznye granitsy razdela v polikristallicheskikh plenkakh i strukturakh na ikh osnove (Heterophase Interface in Polycrystalline Films and Structures Based on Them), St. Petersburg: Insanta, 2008.

    Google Scholar 

  10. Golubchenko, N.V., Moshnikov, V.A., and Chesnokova, D.B., Investigation into the microstructure and phase composition of polycrystalline lead selenide films in the course of thermal oxidation, Glass Phys. Chem., 2006, vol. 32, no. 3, pp. 337–345.

    Article  Google Scholar 

  11. Maraeva, E.V., Moshnikov, V.A., and Tairov, Yu.M., Models of the formation of oxide phases in nanostructured materials based on lead chalcogenides subjected to treatment in oxygen and iodine vapors, Semiconductors, 2013, vol. 47, no. 10, pp. 1422–1425.

    Article  Google Scholar 

  12. Afanasjev, V.P., Petrov, A.A., Pronin, I.P., et al., Polarization and self-polarization in PZT thin films, J. Phys.: Condens. Matter, 2001, vol. 13, no. 39, pp. 8755–8763.

    Google Scholar 

  13. Kotova, N.M., Vorotilov, K.A., Seregin, D.S., and Sigov, A.S., Role of precursors in the formation of lead zirconate titanate thin films, Inorg. Mater., 2014, vol. 50, no. 6, pp. 612–616.

    Article  Google Scholar 

  14. Afanas’ev, V.P. and Mukhin, N.V., Structure and properties of heterophase film PZT deposited by RF magne-tron sputtering, Vak. Tekh. Tekhnol., 2014, vol. 23, no. 1, pp. 133–134.

    Google Scholar 

  15. Lines, M.E. and Glass, A.M., Principles and Application of Ferroelectrics and Related Materials, Oxford: Clarendon, 1977.

    Google Scholar 

  16. Geguzin, Ya.E., Diffuzionnaya zona (Diffusion Zone), Moscow: Nauka, 1979.

    Google Scholar 

  17. Sanjeev, A. and Ramesh, R., Point defect chemistry of metal oxide heterostructures, Annu. Rev. Mater. Res., 1998, vol. 28, pp. 463–499.

    Google Scholar 

  18. Prisedskii, V.V., Nestekhiometricheskie segnetoelektriki AIIVIVO3 (Nonstoichiometric Ferroelectric AIIVIVO3), Donetsk: Noulidzh, 2011.

    Google Scholar 

  19. Kroger, F.A., The Chemistry of Imperfect Crystals, New York: Wiley, 1964.

    Google Scholar 

  20. Aleksandrova, O.A., Maksimov, A.I., Moshnikov, V.A., and Chesnokova, D.B., Khal’kogenidy i oksidy elementov IV gruppy. Poluchenie, issledovanie, primenenie (Chalcogenides and Oxides of IV Group Elements: Obtaining, Investigation, and Application), Moshnikov, V.A., Ed., St. Petersburg: Tekhnolit, 2008.

    Google Scholar 

  21. Zakis, Yu.R., Kantorovich, L.N., Kotomin, E.A., et al., Modeli protsessov v shirokoshchelevykh tverdykh telakh s defektami (Model Processes in Wide-Slotted Solids with Defects), Riga: Znanie, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Mukhin.

Additional information

Original Russian Text © V.P. Afanas’ev, K.A. Vorotilov, N.V. Mukhin, 2016, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanas’ev, V.P., Vorotilov, K.A. & Mukhin, N.V. Effect of the synthesis conditions on the properties of polycrystalline films of lead zirconate titanate of nonstoichiometric composition. Glass Phys Chem 42, 295–301 (2016). https://doi.org/10.1134/S1087659616030020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659616030020

Keywords

Navigation