Skip to main content
Log in

Short-range order of germanium selenide glass

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Chalcogenide Ge20Se80 glass was prepared using the melt-quench technique. The radial distribution function is obtained from X-ray diffraction data in the scattering vector interval 0.28 ≤ K ≤ 6.87 Å−1. Reverse Monte Carlo (RMC) simulations are useful to compute the partial pair distribution functions, partial structure factors, S ij(K), and total structure factor. Values of r 1/r 2 ratio and bond angle (Θ) indicate that Ge(Se½)4 tetrahedra units connected by chains of the chalcogen atoms are present. The partial structure factors have shown that homopolar Ge—Ge and Se—Se bonds are behind the appearance of the first sharp diffraction peak in the total structure factor. Tetrahedral Ge(Se½)4 structural units connected by Se-Se chains have been confirmed by the simulated values of the partial coordination numbers and the bond angle distributions. Finally, Raman spectra measurements have strongly supported the conclusions obtained either from the calculated Fourier data or from RMC simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inam, F., Shatnawi, M.T., Tafen, D., Billinge, S.J.L., Chen, P., and Drabold, D.A., An intermediate phase in GexSe1 − x glasses: Experiment and simulation, J. Phys.: Condens. Matter, 2007, vol. 19, no. 45, p. 455206.

    Google Scholar 

  2. Sharma, D., Sampath, S., Lalla, N.P., and Awasthi, A.M., Mesoscopic organization and structural phases in network-forming GexSe1 − x glasses, Physica B (Amsterdam), 2005, vol. 357, pp. 290–298.

    Article  Google Scholar 

  3. Wang, Y., Ohata, E., Hosokawa, S., Sakurai, M., and Matsubara, E., Intermediate-range order in glassy GexSe1 − x around the stiffness transition composition, J. Non-Cryst. Solids, 2004, vol. 337, no. 1, pp. 54–61.

    Article  Google Scholar 

  4. Tafen, D. and Drabold, D.A., Models and modeling schemes for binary IV—VI glasses, Phys. Rev. B: Condens. Matter, 2005, vol. 71, no. 5, pp. 54206–54220.

    Article  Google Scholar 

  5. Rao, N.R., Krishna, P.S.R., Basu, S., Dasannacharya, B.A., Sangunni, K.S., and Gopal, E.S.R., Structural correlations in GexSe1 − x glasses—A neutron diffraction study, J. Non-Cryst. Solids, 1998, vol. 240, nos. 1–3, pp. 221–231.

    Google Scholar 

  6. Machado, K.D., de Lima, J.C., Campos, C.E.M., Gasperini, A.A.M., de Souza, S.M., Maurmann, C.E., Grandi, T.A., and Pizani, P.S., Reverse Monte Carlo simulations and Raman scattering of an amorphous GeSe alloy produced by mechanical alloying, Solid State Commun., 2005, vol. 133, no. 6, pp. 411–416.

    Article  Google Scholar 

  7. Hosokawa, S., Wang, Y., Sakurai, M., Bèrar, J.-F., Pilgrim, W.-C., and Murase, K., Rigidity transitions and intermediate structures of Ge–Se glasses—An anomalous X-ray scattering study, Nucl. Instrum. Methods Phys. Res., Sect. B, 2003, vol. 199, pp. 165–168.

    Article  Google Scholar 

  8. Gulbrandsen, E., Johnsen, H.B., Endregaard, M., Grande, T., and Stølen, S., Short-range order in Serich Ge–Se glasses—An EXAFS study, J. Solid State Chem., 1999, vol. 145, pp. 253–259.

    Article  Google Scholar 

  9. Susman, S., Price, D.L., Volin, K.J., Dejus, R.J., and Montague, D.G., Intermediate-range order in binary chalcogenide glasses: The first sharp diffraction peak, J. Non-Cryst. Solids, 1988, vol. 106, pp. 26–29.

    Article  Google Scholar 

  10. Salmon, P.S. and Petri, I., Structure of glassy and liquid GeSe2, J. Phys.: Condens. Matter, 2003, vol. 15, no. 16, pp. S1509–S1528.

    Google Scholar 

  11. Warren, B.E., Krutter, H., and Morningstar, O., Fourier analysis of X-ray patterns of vitreous SiO2 and B2O2, J. Am. Ceram. Soc., 1936, vol. 19, nos. 1–12, pp. 202–206.

    Article  Google Scholar 

  12. McGreevy, R.L., Reverse Monte Carlo modelling, J. Phys.: Condens. Matter, 2001, vol. 13, pp. R877–R913.

    Google Scholar 

  13. McGreevy, R.L. and Pusztai, L., Reverse Monte Carlo simulation: A new technique for the determination of disordered structures, Mol. Simul., 1988, vol. 1, no. 6, pp. 359–367.

    Article  Google Scholar 

  14. Faber, T.E. and Ziman, J.M., A theory of the electrical properties of liquid metals, Philos. Mag., 1965, vol. 11, no. 109, pp. 153–173.

    Article  Google Scholar 

  15. Elliott, S.R., Physics of Amorphous Materials, 2nd ed. New York: Longman, 1990.

    Google Scholar 

  16. Moharram, A.H. and Abdel-Basit, A.M., Structural correlations of AsGeSe glasses, Physica A (Amsterdam, Neth.), 2005, vol. 358, nos. 1–4, pp. 279–284.

    Article  Google Scholar 

  17. Szczygielska, A., Burian, A., Dore, J.C., Honkimäki, V., and Duber, S., Local structure of saccharoseand anthracene-based carbons studies by wide-angle highenergy X-ray scattering, J. Alloys Compd., 2004, vol. 362, nos. 1–2, pp. 307–313.

    Article  Google Scholar 

  18. Keen, D.A. and McGreevy, R.L., Structural modelling of glasses using reverse Monte Carlo simulation, Nature (London), 1990, vol. 344, pp. 423–425.

    Article  Google Scholar 

  19. http://wwwisis2.isis.rl.ac.uk/rmc.

  20. Johnson, R.W., Price, D.L., Susman, S., Arai, M., Morrison, T.I., and Shenoy, G.K., The structure of silicon-selenium glasses: I. Short-range order, J. NonCryst. Solids, 1986, vol. 83, pp. 251–271.

    Article  Google Scholar 

  21. Kaplow, R., Strong, S.L., and Averbach, B.L., Radial density functions for liquid mercury and lead, Phys. Rev., 1965, vol. 138, no. 5A, pp. A1336–A1345.

    Article  Google Scholar 

  22. Machado, K.D., de Lima, J.C., Campos, C.E.M., Grandi, T.A., and Pizani, P.S., Reverse Monte Carlo simulations and Raman scattering of an amorphous GeSe4 alloy produced by mechanical alloying, J. Chem. Phys., 2004, vol. 120, no. 1, pp. 329–336.

    Article  Google Scholar 

  23. Fuoss, P.H., Eisenberger, P., Warburton, W.K., and Bienestock, A., Application of differential anomalous X-ray scattering to structural studies of amorphous materials, Phys. Rev. Lett., 1981, vol. 46, no. 23, pp. 1537–1540.

    Article  Google Scholar 

  24. Dwivedi, P.K., Tripathi, S.K., Pradhan, A., Kulkarni, V.N., and Agarwal, S.C., Raman study of ion irradiated GeSe films, J. Non-Cryst. Solids, 2000, vol. 266.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Moharram.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moharram, A.H. Short-range order of germanium selenide glass. Glass Phys Chem 41, 453–459 (2015). https://doi.org/10.1134/S1087659615050090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659615050090

Keywords

Navigation