Skip to main content
Log in

Chemical composition and crystal structure of tungsten oxide films

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The most typical results of studies on the chemical and phase compositions of the tungsten oxide films synthesized by different chemical and physical methods, including the films that have undergone additional thermal treatment in vacuum and in the air, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shapovalov, V. I., Nanopowders and films of titanium oxide for photocatalysis: A review, Glass Phys. Chem., 2010, vol. 36, no. 2, pp. 121–157.

    Article  Google Scholar 

  2. Kanan, S.M., El-Kadri, O.M., Abu-Yousef, I.A., and Kanan, M.C., Semiconducting metal oxide based sensors for selective gas pollutant detection, Sensors, 2009, vol. 9, no. 10, pp. 8158–8196.

    Article  Google Scholar 

  3. Lapshin, A.E., Shapovalov, V.I., Komlev, A.E., Arsent’ev, M.Yu., and Komlev, A.A., Effect of heat treatment on phase composition and spectral properties of heterostructures containing titanium and tungsten oxide films, Glass Phys. Chem., 2013, vol. 39, no. 5, pp. 563–569.

    Article  Google Scholar 

  4. Shapovalov, V.I., Shilova, O.A., Smirnova, I.V., Zav’yalov, A.V., Lapshin, A.E., Magdysyuk, O.V., Panov, M.., Plotnikov, V.V., and Shutova, N.S., Modification of the glass surface by titanium dioxide films synthesized through the sol-gel method, Glass Phys. Chem., 2011, vol. 37, no. 2, pp. 150–156.

    Article  Google Scholar 

  5. Shapovalov, V.I., Efimenko, L.P., Komlev, A.E., Pugachev, K.E., Baryshnikov, V.G., and Polyakova, I.G., Change in the optical properties of amorphous films of transition metal oxides upon formation of the nanocrystalline phase, Glass Phys. Chem., 2009, vol. 35, no. 6, pp. 620–626.

    Article  Google Scholar 

  6. Shapovalov, V.I., Lapshin, A.E., Komlev, A.E., and Komlev, A.A., Crystallization and thermochromism in tungsten oxide films annealed in vacuum, Tech. Phys. Lett., 2012, vol. 38, no. 6, pp. 555–558.

    Article  Google Scholar 

  7. Chiang, J.-L., Jan, S.-S., Chou, J.-C., and Chen, Y.-C., Study on the temperature effect, hysteresis, and drift of pH-ISFET devices based on amorphous tungsten oxide, Sens. Actuators, B, 2001, vol. 76, no. 1, pp. 624–628.

    Article  Google Scholar 

  8. Ma, R.-H. and Chen, Y.-C., BIPV-powered smart windows utilizing photovoltaic and electrochromic devices, Sensors, 2012, vol. 12, no. 1, pp. 359–372.

    Google Scholar 

  9. Anisimov, O.V., Gaman, V.I., Maksimova, N.K., Najden, Yu.P., Novikov, V.A., Sevastyanov, E.Yu., Rudov, F.V., and Chernikov, E.V., Effect of gold on the properties of nitrogen dioxide sensors based on WO3 thin films, Semiconductors, 2010, vol. 44, no. 3, pp. 366–372.

    Article  Google Scholar 

  10. Joraid, A.A., Comparison of electrochromic amorphous and crystalline electron beam deposited WO3 thin films, Curr. Appl. Phys., 2009, vol. 9, no. 1, pp. 73–79.

    Article  Google Scholar 

  11. Hong, S.J., Jun, H., and Lee, J.S., Nanocrystalline WO3 film with high photo-electrochemical activity prepared by polymer-assisted direct deposition, Scr. Mater., 2010, vol. 63, no. 7, pp. 757–760.

    Article  Google Scholar 

  12. Hemberg, A., Konstantinidis, S., Viville, P., Renaux, F., Dauchot, J.P., Llobet, E., and Snyders, R., Effect of the thickness of reactively sputtered WO3 submicron thin films used for NO2 detection, Sens. Actuators, B, 2012, vols. 171–172, pp. 18–24.

    Article  Google Scholar 

  13. Shen, Y., Yamazaki, T., Liu, Z., Meng, D., Kikuta, T., and Nakatani, N., Influence of effective surface area on gas sensing properties of WO3 sputtered thin films, Thin Solid Films, 2009, vol. 517, pp. 2069–2072.

    Article  Google Scholar 

  14. Shinde, P.S., Go, G.G., and Lee, W.J., Multilayered large-area WO3 films on sheet and mesh-type stainless steel substrates for photoelectrochemical hydrogen generation, Int. J. Energy Res., 2013, vol. 37, no. 4, pp. 323–330.

    Article  Google Scholar 

  15. Hong, S.J., Jun, H., Borse, P.H., and Lee, J.S., Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems, Int. J. Hydrogen Energy, 2009, vol. 34, pp. 3234–3242.

    Article  Google Scholar 

  16. Suzuki, S., Onodera, T., Kawaji, J., Mizukami, T., and Yamaga, K., Effect of support materials on platinum lattice strain and its oxygen reduction activity, Appl. Catal., A, 2012, vols. 427–428, pp. 92–97.

    Article  Google Scholar 

  17. Amano, F., Li, D., and Ohtani, B., Photoelectrochemical property of tungsten oxide films of vertically aligned flakes for visible-light-induced water oxidation, J. Electrochem. Soc., 2011, vol. 158, pp. K42–K46.

    Article  Google Scholar 

  18. Sun, P., Hu, M., Li, M., and Ma, S., Nano-WO3 film modified macro-porous silicon (MPS) gas sensor, J. Semicond., 2012, vol. 33, no. 5, p. 054012 (5 pages).

    Article  Google Scholar 

  19. Lu, H.-H., Effects of oxygen contents on the electrochromic properties of tungsten oxide films prepared by reactive magnetron sputtering, J. Alloys Compd., 2008, vol. 465, pp. 429–435.

    Article  Google Scholar 

  20. Senguttuvan, T.D., Srivastava, V., Tawal, J.S., Mishra, M., Srivastava, S., and Jain, K., Gas sensing properties of nanocrystalline tungsten oxide synthesized by acid precipitation method, Sens. Actuators, B, 2010, vol. 150, pp. 384–388.

    Article  Google Scholar 

  21. Ghimbeu, C.M., Lumbreras, M., Schoonman, J., and Siadat, M., Electrosprayed metal oxide semiconductor films for sensitive and selective detection of hydrogen sulfide, Sensors, 2009, vol. 9, pp. 9122–9132.

    Article  Google Scholar 

  22. Papadimitropoulos, G., Vourdas, N., Giannakopoulos, K., Vasilopoulou, M., and Davazoglou, D., Porous hot-wire deposited WO3 films with high optical transmission, J. Appl. Phys., 2011, vol. 109, p. 103527 (7 pages).

    Article  Google Scholar 

  23. Ahsan, M., Ahmad, M.Z., Tesfamichael, T., Bell, J., Wlodarski, W., and Motta, N., Low-temperature response of nanostructured tungsten oxide thin films toward hydrogen and ethanol, Sens. Actuators, B, 2012, vol. 173, pp. 789–796.

    Article  Google Scholar 

  24. Gyorgy, E. and del Pino, A.P., Tunable optical and nano-scale electrical properties of WO3 and Ag-WO3 nanocomposite thin films, J. Mater. Sci., 2011, vol. 46, no. 10, pp. 3560–3567.

    Article  Google Scholar 

  25. Hsu, C.-H., Chang, C.-C., Yeh, K.-W., Wu, Y.-R., Chan, C.-C., Wang, M.-J., and Wu, M.-K., Pulsed laser deposition of (WO3)1 − x (Nb2O5)x thin films: Characterization and gasochromic studies, Thin Solid Films, 2011, vol. 520, pp. 1470–1474.

    Article  Google Scholar 

  26. Riecha, I., Acosta, M., Pena, J.L., and Bartolo-Pérez, P., Effects of working pressure on physical properties of tungsten-oxide thin films sputtered from oxide target, J. Vac. Sci. Technol., A, 2010, vol. 28, pp. 329–333.

    Article  Google Scholar 

  27. Ke, M.-T., Lee, M.-T., Lee, C.-Y., and Fu, L.-M., MEMS-based benzene gas sensor with a self-heating WO3 sensing layer, Sensors, 2009, vol. 9, pp. 2895–2906.

    Article  Google Scholar 

  28. Lapshin, A.E., Shapovalov, V.I., Komlev, A.E., Arsent’ev, M.Yu., Komlev, A.A., and Morozova, A.A., Phase composition of films of the heterostructures TiO2/WO3/SiO2 and WO3/TiO2/SiO2, Fiz. Khim. Stekla, 2012, vol. 38, no. 6. pp. 869–871.

    Google Scholar 

  29. Shapovalov, V.I., Lapshin, A.E., Komlev, A.E., Arsent’ev, M.Yu., and Komlev, A.A., Crystallization and thermochromism of annealed heterostructures containing titanium and tungsten oxide films, Tech. Phys., 2013, vol. 58, no. 9, pp. 1313–1322.

    Article  Google Scholar 

  30. Barybin, A.A., Zavyalov, A.V., and Shapovalov, V.I., A nonisothermal physicochemical model of synthesis of oxyinitrides by reactive sputtering techniques, Glass Phys. Chem., 2012, vol. 38, no. 4, pp. 396–401.

    Article  Google Scholar 

  31. Madhavi, V., Kondaiah, P., and Uthanna, S., Influence of substrate bias voltage on structural and optical properties of RF reactive magnetron sputtered WO3 thin films, J. Phys.: Conf. Ser., 2012, vol. 390, p. 012059 (5 pages).

    Google Scholar 

  32. Gullapalli, S.K., Vemuri, R.S., and Ramana, C.V., Structural transformation induced changes in the optical properties of nanocrystalline tungsten oxide thin films, Appl. Phys. Lett., 2010, vol. 96, p. 171903 (3 pages).

    Article  Google Scholar 

  33. Penner, S., Liu, X., Klötzer, B., Klauser, F., Jenewein, B., and Berte, E., The structure and composition of oxidized and reduced tungsten oxide thin films, Thin Solid Films, 2008, vol. 516, pp. 2829–2836.

    Article  Google Scholar 

  34. Lin, F., Li, C.-P., Chen, G., Tenent, R.C., Wolden, C.A., Gillaspie, D.T., Dillon, A.C., Richards, R.M., and Engtrakul, C., Low-temperature ozone exposure technique to modulate the stoichiometry of WOx nanorods and optimize the electrochromic performance, Nanotechnology, 2012, vol. 23, p. 255601 (8 pages).

    Article  Google Scholar 

  35. Bathe, S.R. and Patil, P.S., Titanium doping effects in electrochromic pulsed spray pyrolysed WO3 thin films, Solid State Ionics, 2008, vol. 179, pp. 314–323.

    Article  Google Scholar 

  36. Azimirad, R., Akhavan, O., and Moshfegh, A.Z., The effect of heat treatment on physical properties of nanograined (WO3)1 − x -(Fe2O3)x thin films, Vacuum, 2011, vol. 85, pp. 810–819.

    Article  Google Scholar 

  37. Alov, N.V., Kutsko, D.M., and Bordo, K.V., Ion-beam reduction of the surface of higher oxides of molybdenum and tungsten, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2008, vol. 2, no. 2, pp. 184–188.

    Article  Google Scholar 

  38. Barreca, D., Bozza, S., Carta, G., Rossetto, G., Tondello, E., and Zanella, P., Structural and morphological analyses of tungsten oxide nanophasic thin films obtained by MOCVD, Surf. Sci., 2003, vols. 532–535, pp. 439–443.

    Article  Google Scholar 

  39. Xu, N., Sun, M., Cao, Y.W., Yao, J.N., and Wang, E.G., Influence of pH on structure and photochromic behavior of nanocrystalline WO3 films, Appl. Sur. Sci., 2000, vol. 157, pp. 81–84.

    Article  Google Scholar 

  40. Leftheriotis, G., Papaefthimiou, S., Yianoulis, P., Siokou, A., and Kefalas, D., Structural and electrochemical properties of opaque sol-gel deposited WO3 layers, Appl. Surf. Sci., 2003, vol. 218, pp. 275–280.

    Article  Google Scholar 

  41. Feng, M., Pan, A.L., Zhang, H.R., Li, Z.A., Liu, F., Liu, H.W., Shi, D.X., Zou, B.S., and Gao, H.J., Strong photoluminescence of nanostructured crystalline tungsten oxide thin films, Appl. Phys. Lett., 2005, vol. 86, p. 141901 (3 pages).

    Article  Google Scholar 

  42. Ahsan, M., Tesfamichael, T., Ionescu, M., Bell, J., and Motta, N., Low-temperature CO sensitive nanostructured WO3 thin films doped with Fe, Sens. Actuators, B, 2012, vol. 162, pp. 14–21.

    Article  Google Scholar 

  43. Leftheriotis, G., Papaefthimiou, S., Yianoulisa, P., and Siokoub, A., Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films, Thin Solid Films, 2001, vol. 384, pp. 298–306.

    Article  Google Scholar 

  44. Wang, C.-K., Sahu, D.R., Wang, S.-C., Lin, C.-K., and Huang, J.-L., Structural evolution and chemical bonds in electrochromic WO3 films during electrochemical cycles, J. Phys. D: Appl. Phys., 2012, vol. 45, p. 225303 (7 pages).

    Article  Google Scholar 

  45. Penza, M., Tagliente, M.A., Mirenghi, L., Gerardi, G., Martucci, C., and Gassano, G., Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor, Sens. Actuators, B, 1998, vol. 50, pp. 9–18.

    Article  Google Scholar 

  46. Cui, H.-N., Jia, Sh., Meng, L.-J., and Teixeira, V., X-ray analysis of multi-films for electrochromic device application, Microchim. Acta, 2004, vol. 145, pp. 19–23.

    Article  Google Scholar 

  47. Ramana, C.V., Utsunomiya, S., Ewing, R.C., Julien, C.M., and Becker, U., Structural stability and phase transitions in WO3 thin films, J. Phys. Chem. B, 2006, vol. 110, pp. 10430–10435.

    Article  Google Scholar 

  48. Cremonesi, A., Djaoued, Y., Bersani, D., and Lottici, P.P., Micro-Raman spectroscopy on polyethylene-glycol assisted sol-gel meso and macroporous WO3 thin films for electrochromic applications, Thin Solid Films, 2008, vol. 516, pp. 4128–4132.

    Article  Google Scholar 

  49. Lee, S.-H., Cheong, H.M., Tracy, C.E., Mascarenhas, A., Czanderna, A.W., and Deb, S.K., Electrochromic coloration efficiency of α-WO3 − y thin films as a function of oxygen deficiency, Appl. Phys. Lett., 1999, vol. 75, pp. 1541–1543.

    Article  Google Scholar 

  50. Lee, S.-H., Cheong, H.M., Liu, P., Smith, D., Tracy, C.E., Mascanrenhas, A., Pitts, J.R., and Deb, S.K., Gasochromic mechanism in α-WO3 thin films based on Raman spectroscopic studies, J. Appl. Phys., 2000, vol. 88, no. 5, pp. 3076–3078.

    Article  Google Scholar 

  51. Karuppasamy, K.M. and Subrahmanyam, A., Studies on the correlation between electrochromic colouration and the relative density of tungsten trioxide (WO3 − x ) thin films prepared by electron beam evaporation, J. Phys. D: Appl. Phys., 2009, vol. 42, p. 095301 (6 pages).

    Article  Google Scholar 

  52. Ozkan, E., Lee, S.-H., Tracy, C.E., Pitts, J.R., and Deb, S.K., Comparison of electrochromic amorphous and crystalline tungsten oxide films, Sol. Energy Mater. Sol. Cells, 2003, vol. 79, pp. 439–448.

    Article  Google Scholar 

  53. Fominskii, V.Yu., Romanov, R.I., Zuev, V.V., Gnedovets, A.G., and Alymov, M.I., Functional micro- and nanostructured layers based on tungsten oxide for high-temperature hydrogen detectors on the “Pt-metal oxide-SiC” platform, Nanotechnol. Russ., 2012, vol. 7, nos. 5–6, pp. 246–254.

    Article  Google Scholar 

  54. Djaoued, Y., Balaji, S., and Bruning, R., Electrochromic devices based on porous tungsten oxide thin films, J. Nanomater., 2012, vol. 2012, article ID 674168 (9 pages).

  55. Leftheriotis, G., Papaefthimiou, S., and Yianoulis, P., The effect of water on the electrochromic properties of WO3 films prepared by vacuum and chemical methods, Sol. Energy Mater. Sol. Cells, 2004, vol. 83, pp. 115–124.

    Article  Google Scholar 

  56. Gil-Rostra, J., Chaboy, J., Yubero, F., Vilajoana, A., and González-Elipe, A.R., Colored and transparent oxide thin films prepared by magnetron sputtering: The glass blower approach, ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 1967–1976.

    Article  Google Scholar 

  57. Antonaia, A., Santoro, M.C., Fameli, G., and Polichetti, T., Transport mechanism and IR structural characterisation amorphous WO3 films, Thin Solid Films, 2003, vol. 426, pp. 281–287.

    Article  Google Scholar 

  58. Behbahani, M., Ranjbar, M., Kameli, P., and Salamati, H., Hydrogen sensing by wet-gasochromic coloring of PdCl2(aq)/WO3 and the role of hydrophilicity of tungsten oxide films, Sens. Actuators, B, 2013, vol. 88, pp. 127–136.

    Article  Google Scholar 

  59. Hemati, A., Allaf, B.M., Ranjbar, M., Kameli, P., and Salamati, H., Gasochromic tungsten oxide films with PdCl2 solution as an aqueous hydrogen catalyst, Sol. Energy Mater. Sol. Cells, 2013, vol. 108, pp. 105–112.

    Article  Google Scholar 

  60. Wang, X., Song, X., Zheng, Y., Ma, R., and Yin, H., Electrochemical formation and characterisation of poly(3-methylthiophene)/WO3 nanocomposite films, J. Exp. Nanosci., 2013, vol. 8, pp. 546–554.

    Article  Google Scholar 

  61. Song, X., Zheng, Y., Ma, R., and Yin, H., Electrodeposition of poly(3-chlorothiophene) film on WO3 surfaces in an ionic liquid, J. Macromol. Sci., Part B: Phys., 2012, vol. 51, pp. 1080–1088.

    Article  Google Scholar 

  62. Kostis, I., Vourdas, N., Vasilopoulou, M., Douvas, A., Papadimitropoulos, G., Konofaos, N., Iliadis, A., and Davazoglou, D., Formation of stoichiometric, sub-stoichiometric undoped, and hydrogen doped tungsten oxide films, enabled by pulsed introduction of O2 or H2 during hot-wire vapor deposition, Thin Solid Films, 2013, vol. 537, pp. 124–130.

    Article  Google Scholar 

  63. Bertus, L. and Duta, A., Synthesis of WO3 thin films by surfactant mediated spray pyrolysis, Ceram. Int., 2012, vol. 38, pp. 2873–2882.

    Article  Google Scholar 

  64. Santato, C., Odziemkowski, M., Ulmann, M., and Augustynski, J., Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications, J. Am. Chem. Soc., 2001, vol. 123, pp. 10639–10649.

    Article  Google Scholar 

  65. Yin, H.Y., Song, X.C., Zheng, Y.F., Wang, X., Yang, Z.A., and Ma, R., Organic/inorganic nanocomposite films based on poly(3-methoxythiophene) and WO3, Mater. Sci. Eng., B, 2011, vol. 176, pp. 684–687.

    Article  Google Scholar 

  66. Songara, S., Gupta, V., Patra, M.K., Singh, J., Saini, L., Gowd, G.S., Vadera, S.R., and Kumar, N., Tuning of crystal phase structure in hydrated WO3 nanoparticles under wet chemical conditions and studies on their photochromic properties, J. Phys. Chem. Solids, 2012, vol. 73, pp. 851–857.

    Article  Google Scholar 

  67. Buono-Core, G.E., Klahn, A.H., Castillo, C., Bustamante, M.J., Muñoz, E., Cabello, G., and Chornik, B., Synthesis and evaluation of bis-b-diketonate dioxotungsten(VI) complexes as precursors for the photo-deposition of WO3 films, Polyhedron, 2011, vol. 30, pp. 201–206.

    Article  Google Scholar 

  68. Mendoza-Agüero, N. and Agarwal, V., Optical and structural characterization of tungsten oxide electrode-posited on nanostructured porous silicon: Effect of annealing atmosphere and temperature, J. Alloys Compd., 2013, vol. 581, pp. 596–601.

    Article  Google Scholar 

  69. Dong, Y.F., Li, L.Y., Jiang, W.F., Wang, H.Y., and Li, X.J., Capacitive humidity-sensing properties of electron-beam-evaporated nanophased WO3 film on silicon nanoporous pillar array, Physica E, 2009, vol. 41, no. 4, pp. 711–714.

    Article  Google Scholar 

  70. Zhang, C., Boudiba, A., Olivier, M.-G., Snyders, R., and Debliquy, M., Magnetron sputtered tungsten oxide films activated by dip-coated platinum for ppm-level hydrogen detection, Thin Solid Films, 2012, vol. 520, pp. 3679–3683.

    Article  Google Scholar 

  71. Kruger, P., Koutiri, I., and Bourgeois, S., First-principles study of hexagonal tungsten trioxide: Nature of lattice distortions and effect of potassium doping, Phys. Rev. B: Condens. Matter, 2012, vol. 86, p. 224102 (6 pages).

    Article  Google Scholar 

  72. Jiao, Z., Sun, X.W., Wang, J., Ke, L., and Demir, H.V., Hydrothermally grown nanostructured WO3 films and their electrochromic characteristics, J. Phys. D: Appl. Phys., 2010, vol. 43, p. 285501 (6 pages).

    Article  Google Scholar 

  73. Romanyuk, A. and Oelhafen, P., Evidence of different oxygen states during thermal coloration of tungsten oxide, Sol. Energy Mater. Sol. Cells, 2006, vol. 90, pp. 1945–1950.

    Article  Google Scholar 

  74. Maffeis, T.G.G., Yung, D., LePennec, L., Penny, M.W., Cobley, R.J., Comini, E., Sberveglieri, G., and Wilks, S.P., STM and XPS characterisation of vacuum annealed nanocrystalline WO3 films, Sur. Sci., 2007, vol. 601, pp. 4953–4957.

    Article  Google Scholar 

  75. Maffeis, T.G.G., Penny, M.W., Cobley, R.J., Comini, E., Sberveglieri, G., and Wilks, S.P., XPS Characterisation of vacuum annealed nanocrystalline WO3 films, e-J. Surf. Sci. Nanotechnol., 2009, vol. 7, pp. 319–322.

    Article  Google Scholar 

  76. Jayatissa, A.H., Cheng, S.-T., and Gupta, T., Annealing effect on the formation of nanocrystals in thermally evaporated tungsten oxide thin films, Mater. Sci. Eng., B, 2004, vol. 109, pp. 269–275.

    Article  Google Scholar 

  77. Durrani, S.M.A., Khawaja, E.E., Salim, M.A., Al-Kuhaili, M.F., and Al-Shukri, A.M., Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide, Sol. Energy Mater. Sol. Cells, 2002, vol. 71, pp. 313–325.

    Article  Google Scholar 

  78. Siokou, A., Leftheriotis, G., Papaefthimiou, S., and Yianoulis, P., Effect of the tungsten and molybdenum oxidation states on the thermal coloration of amorphous WO3 and MoO3 films, Surf. Sci., 2001, vols. 482–485, pp. 294–299.

    Article  Google Scholar 

  79. Karuppasamy, A. and Subrahmanyam, A., Electron beam induced coloration and luminescence in layered structure of WO3 thin films grown by pulsed dc magnetron sputtering, J. Appl. Phys., 2007, vol. 101, p. 113522 (5 pages).

    Article  Google Scholar 

  80. Jeng, J., The influence of annealing atmosphere on the formation and characteristics of microvoid WO3-Sb films, J. Alloys Compd., 2013, vol. 548, pp. 27–32.

    Article  Google Scholar 

  81. Ramgir, N.S., Ganapathi, S.K., Kaur, M., Mishra, S., Datta, N., Aswal, D.K., Gupta, S.K., and Yakhmi, J.V., Au incorporated WO3 thin films, AIP Conf. Proc., 2011, vol. 1349, pp. 679–680.

    Article  Google Scholar 

  82. Chan, C.-C., Hsu, W.-C., Chang, C.-C., and Hsu, C.-S., Hydrogen incorporation in gasochromic coloration of sol-gel WO3 thin films, Sens. Actuators, B, 2011, vol. 157, pp. 504–509.

    Article  Google Scholar 

  83. Zhang, J., Tu, J.P., Xia, X.H., Qiao, Y., and Lu, Y., An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte, Sol. Energy Mater. Sol. Cells, 2009, vol. 93, pp. 1840–1845.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Shapovalov.

Additional information

Original Russian Text © V.I. Shapovalov, A.E. Lapshin, A.G. Gagarin, L.P. Efimenko, 2014, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapovalov, V.I., Lapshin, A.E., Gagarin, A.G. et al. Chemical composition and crystal structure of tungsten oxide films. Glass Phys Chem 40, 553–569 (2014). https://doi.org/10.1134/S1087659614050150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659614050150

Keywords

Navigation