Skip to main content
Log in

Controlling the microporosity of SBA-15 silicate material by background salt solution

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The structure of silicate material of the SBA-15 type has been studied under variable composition of a salt solution in synthesis. Ammonium and sodium chlorides, as well as ammonium fluoride, introduced into the composition of the reaction mixture both at the first stage of precipitation and at the second stage of the thermal treatment (TT), have been used as the salt additives. The mesostructure was controlled by X-ray diffraction, gas adsorption and transmission electron microscopy. It was found that the multiple increase of the ionic strength of the solutions in the presence of chloride salts disrupt the stoichiometry of the silicate-surfactant interaction at the first stage of formation of mesostructure and leads to the formation of an impurity of irregular structure. The ions of ammonium promote an increase in the microporosity of the silicate wall. The presence of sodium ions reduces microporosity. Small quantities of fluoride ions (F: Si = 0.032) improve the ordering of the product at the stage of primary precipitation. At the ratio F: Si = 0.16, the hexagonal mesostructure is not formed. The introduction of fluorides at the TT stage leads to a decrease of the silicate pore wall thickness, microporosity and hexagonality of the pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S., Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism, Nature (London), 1992, vol. 359, pp. 710–712.

    Article  Google Scholar 

  2. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., and Schenker, J.L., A new family of mesoporous molecular-sieves prepared with liquid-crystal templates, J. Am. Chem. Soc., 1992, vol. 114, pp. 10834–10843.

    Article  Google Scholar 

  3. Beck, J.S., Chu, C.T.-W., Johnson, I.D., Kresge, C.T., Leonowicz, M.E., Roth, W.J., and Vartuli, J.C., Method for synthesizing mesoporous crystalline material, WO Patent 91/11390, 1991.

    Google Scholar 

  4. Yanagisava, T., Schimizu, T., Kuroda, K., and Kato, C., The preparation of alkyltrimethylammoniumkanemite complexes and their conversion to microporous materials, Bull. Chem. Soc. Jpn., 1990, vol. 63, pp. 988–992.

    Article  Google Scholar 

  5. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., and Stucky, G.D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, vol. 120, no. 24, pp. 6024–6036.

    Article  Google Scholar 

  6. Ryoo, R., Ko, C.H., Kruk, M., Antochshuk, V., and Jaroniec, M., Block-copolymer-templated ordered mesoporous silica: Array of uniform mesopores or mesoporemicropore network, J. Phys. Chem. B, 2000, vol. 104, pp. 11465–11471.

    Article  Google Scholar 

  7. Imperor-Clerc, M., Davidson, P., and Davidson, A., Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers, J. Am. Chem. Soc., 2000, vol. 122, pp. 11925–11933.

    Article  Google Scholar 

  8. Kruk, M., Jaroniec, M., Ko, C.H., and Ryoo, R., Characterization of the porous structure of SBA-15, Chem. Mater., 2000, vol. 12, pp. 1961–1968.

    Article  Google Scholar 

  9. Galarneau, A., Nader, M., Guenneau, F., Di Renzo, F., and Gedeon, A., Understanding the stability in water of mesoporous SBA-15 and MCM-41, J. Phys. Chem. C, 2007, vol. 111, pp. 8268–8277.

    Article  Google Scholar 

  10. Li, J.J., Hu, Q., Tian, H., Ma, C.Y., Li, L.D., Cheng, J., Hao, Z.P., and Qiao, S.Z., Expanding mesoporosity of triblock-copolymer-templated silica under weak synthesis acidity, J. Colloid Interface Sci., 2009, vol. 339, pp. 160–167.

    Article  Google Scholar 

  11. Butsele, K.V., Sibret, P., Fustin, C.A., Gohy, J.F., Passirani, C., Bempot, J.-P., Jerome, R., and Jerome, C., Synthesis and pH-dependent micellization of diblock copolymer mixtures, J. Colloid Interface Sci., 2009, vol. 329, pp. 235–243.

    Article  Google Scholar 

  12. Joo, S.H., Ryoo, R., Kruk, M., and Jaroniec, M., Evidence for general nature of pore interconnectivity in 2-dimensional hexagonal mesoporous silicas prepared using block copolymer templates, J. Phys. Chem. B, 2002, vol. 106, pp. 4640–4646.

    Article  Google Scholar 

  13. Kubo, Sh. and Kosuge, K., Salt-induced formation of uniform fiberlike SBA-15 mesoporous silica particles and application to toluene adsorption, Langmuir, 2007, vol. 23, pp. 11761–11768.

    Article  Google Scholar 

  14. Newalkar, B.L. and Komarneni, S., Control over microporosity of ordered microporousmesoporous silica SBA-15 framework under microwave-hydrothermal conditions: Effect of salt addition, Chem. Mater., 2001, vol. 13, pp. 4573–4579.

    Article  Google Scholar 

  15. Li, C.L., Wang, Y.Q., Guo, Y.L., Liu, X.H., Guo, Y., Zhang, Z.G., Wang, Y.S., and Lu, G.Z., Synthesis of highly ordered, extremely hydrothermal stable SBA-15/Al-SBA-15 under the assistance of sodium chloride, Chem. Mater., 2007, vol. 19, pp. 173–178.

    Article  Google Scholar 

  16. Li, Y., Zhang, W., Zhang, L., Yang, Q., Wei, Z., Feng, Z., and Li, C., Direct synthesis of Al-SBA-15 mesoporous materials via hydrolysis-controlled approach, J. Phys. Chem. B, 2004, vol. 108, pp. 9739–9744.

    Article  Google Scholar 

  17. Kao, H.M., Timg, C.C., and Chao, S.W., Post-synthesis alumination of mesoporous silica SBA-15 with high framework aluminum content using ammonium hexafluoroaluminate, J. Mol. Catal. A: Chem., 2005, vol. 235, pp. 200–208.

    Article  Google Scholar 

  18. Kruk, M. and Cao, L., Pore size tailoring in large-pore SBA-15 silica synthesized in the presence of hexane, Langmuir, 2007, vol. 23, pp. 7247–7254.

    Article  Google Scholar 

  19. Kim, J.M., Han, Y.J., Chmelka, B.F., and Stucky, G.D., One-step synthesis of ordered mesocomposites with nonionic amphiphilic block copolymer: Implications of isoelectric point, hydrolysis rate, and fluoride, Chem. Commun. (Cambridge), 2000, pp. 2437–2438.

    Google Scholar 

  20. Johansson, E.M., Ballem, M.A., Cordoba, J.M., and Oden, M., Rapid synthesis of SBA-15 rods with variable lengths, widths, and tunable large pores, Langmuir, 2011, vol. 27, pp. 4994–4999.

    Article  Google Scholar 

  21. Guo, X.F. and Kim, G.J., Synthesis of ordered mesoporous manganese oxides by double replication for use as an electrode material, Bull. Korean Chem. Soc., 2011, vol. 32, pp. 186–190.

    Article  Google Scholar 

  22. Jun, S., Joo, S.H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., and Terasaki, O., Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure, J. Am. Chem. Soc., 2000, vol. 122, pp. 10712–10713.

    Article  Google Scholar 

  23. Rietveld, H.M., A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71.

    Article  Google Scholar 

  24. Solovyov, L.A., Kirik, S.D., Shmakov, A.N., and Romannikov, V.N., A continuous electron density approach in Rietveld analysis for structure investigations of the mesoporous silicate materials, Adv. X-ray Anal., 2001, vol. 44, pp. 110–115.

    Google Scholar 

  25. Solovyov, L.A., Kirik, S.D., Shmakov, A.N., and Romannikov, V.N., X-ray structural modeling of silicate mesoporous mesophase material, Microporous Mesoporous Mater., 2001, vol. 44–45, pp. 17–23.

    Article  Google Scholar 

  26. Solovyov, L.A., Full-profile refinement by derivative difference minimization, J. Appl. Crystallogr., 2004, vol. 37, pp. 743–749.

    Article  Google Scholar 

  27. Lippens, B.C., Linsen, B.G., and de Boer, J.H., Studies on pore systems in catalysts I: The adsorption of nitrogen, apparatus and calculation, J. Catal., 1964, vol. 3, no. 1, pp. 32–37; de Boer, J.H. and Lippens, B.C., Studies on pore systems in catalysts II: The shapes of pores in aluminum oxide systems, J. Catal., 1964, vol. 3, pp. 38–43.; Lippens, B.C. and de Boer, J.H., Studies on pore systems in catalysts III: Pore-size distribution curves in aluminum oxide systems, J. Catal., 1964, vol. 3, pp. 44–49; de Boer J.H., van den Heuvel, A., and Linsen, B.G., Studies on pore systems in catalysts IV: The two causes of reversible hysteresis, J. Catal., 1964, vol. 3, pp. 268–273; Lippens, B.C. and de Boer, J.H., Studies on pore systems in catalysts V: The t method, J. Catal., 1965, vol. 4, pp. 319–323; de Boer, J.H., Linsen, B.G., and Osinga, Th.J., Studies on pore systems in catalysts VI: The universal t curve, J. Catal., 1965, vol. 4, pp. 643–648; de Boer, J.H., Linsen, B.G., van der Plas, Th., and Zondervan, G.J., Studies on pore systems in catalysts VII: Description of the pore dimensions of carbon blacks by the t method, J. Catal., 1965, vol. 4, pp. 649–653; Cranston, R.W. and Inkley, F.A., The determination of pore structures for nitrogen adsorption isotherms, Adv. Catal., 1957, vol. 9, pp. 143–154.

    Article  Google Scholar 

  28. Barrett, E.P., Joyner, L.G., and Halenda, P.P., The determination of pore volume and area distributions in porous substances: I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 1951, vol. 73, pp. 373–380.

    Article  Google Scholar 

  29. Kruk, M. and Jaroniec, M., Relations between pore structure parameters and their implications for characterization of MCM-41 using gas adsorption and X-ray diffraction, Chem. Mater., 1999, vol. 11, pp. 492–500.

    Article  Google Scholar 

  30. Naskar, M.K. and Eswaramoorthy, M., Significant improvement in the pore properties of SBA-15 brought about by carboxylic acids and hydrothermal treatment, J. Chem. Sci., 2008, vol. 120, pp. 181–186.

    Article  Google Scholar 

  31. Katiyar, A., Yadav, S., Smirniotis, P.G., and Pinto, N.G., Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules, J. Chromatogr., A, 2006, vol. 1122, pp. 13–20.

    Article  Google Scholar 

  32. Thielemann, J.P., Girgsdies, F., Schlögl, R., and Hess, C., Pore structure and surface area of silica SBA-15: Influence of washing and scale-up, Beilstein J. Nanotechnol., 2011, vol. 2, pp. 110–118.

    Article  Google Scholar 

  33. Ravikovitch, P.I. and Neimark, A.V., Characterization of micro- and mesoporosity in SBA-15 materials from adsorption data by the NLDFT method, J. Phys. Chem. B, 2001, vol. 105, pp. 6817–6823.

    Article  Google Scholar 

  34. Fenelonov, V.B., Derevyankin, A.Yu., Kirik, S.D., Solovyov, L.A., Shmakov, A.N., Bonardet, J.-L., Gedeon, A., and Romannikov, V.N., Comparative textural study of highly ordered silicate and aluminosilicate mesoporous mesophase materials having different pore sizes, Microporous Mesoporous Mater., 2001, vols. 44–45, pp. 33–40.

    Article  Google Scholar 

  35. Van Der Voort, P., Ravikovitch, P.I., De Jong, K.P., Benjelloun, M., Van Bavel, E., Janssen, A.H., Neimark, A.V., Weckhuysen, B.M., and Vansant, E.F., A new templated ordered structure with combined micro- and mesopores and internal silica nanocapsules, J. Phys. Chem. B, 2002, vol. 106, pp. 5873–5877.

    Article  Google Scholar 

  36. Dacquin, J.-P., Lee, A.F., Pirez, C., and Wilson, K., Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis, Chem. Commun. (Cambridge), 2012, vol. 48, pp. 212–214.

    Article  Google Scholar 

  37. Schmidt-Winkel, P., Yang, P.D., Margolese, D.I., Chmelka, B.F., and Stucky, G.D., Fluoride-induced hierarchical ordering of mesoporous silica in aqueous acid-syntheses, Adv. Mater. (Weinheim), 1999, vol. 11, pp. 303–307.

    Article  Google Scholar 

  38. Iler, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid, and Surface Properties and Biochemistry of Silica, New York: Wiley, 1979. Translated under the title Khimiya kremnezema, Moscow: Mir, 1982, parts 1, 2, p. 866.

    Google Scholar 

  39. Mouli, K.C., Soni, K., Dalai, A., and Adjaye, J., Effect of pore diameter of Ni-Mo/Al-SBA-15 catalysts on the hydrotreating of heavy gas oil, Appl. Catal., A, 2011, vol. 404, pp. 21–29.

    Article  Google Scholar 

  40. Beaudet, L., Hossain, K.-Z., and Mercier, L., Direct synthesis of hybrid organicinorganic nanoporous silica microspheres: 1. Effect of temperature and organosilane loading on the nano- and micro-structure of mercaptopropyl-unctionalized MSU silica, Chem. Mater., 2003, vol. 15, pp. 327–334.

    Article  Google Scholar 

  41. Voegtlin, A.C., Ruch, F., Guth, J.L., Patarin, J., and Huve, L., F-mediated synthesis of mesoporous silica with ionic and non ionic surfactants: A new templating pathway, Microporous Mesoporous Mater., 1997, vol. 9, pp. 95–105.

    Article  Google Scholar 

  42. Luque, R., Campelo, J.M., Luna, D., Marinas, J.M., and Romero, A.A., NH4F effect in post-synthesis treatment of Al-MCM-41 mesoporous materials, Microporous Mesoporous Mater., 2005, vol. 84, pp. 11–20.

    Article  Google Scholar 

  43. Shao, Y., Wang, L., Zhang, J., and Anpo, M., Novel synthesis of high hydrothermal stability and long-range order MCM-48 with a convenient method, Microporous Mesoporous Mater., 2005, vol. 86, pp. 314–322.

    Article  Google Scholar 

  44. Boissiere, C., Larbot, A., van der Lee, A., Kooyman, P.J., and Prouzet, E., A new synthesis of mesoporous MSU-X silica controlled by a two-step pathway, Chem. Mater., 2000, vol. 12, pp. 2902–2913.

    Article  Google Scholar 

  45. Boissiere, C., Larbot, A., and Prouzet, E., Synthesis of mesoporous MSU-X materials using inexpensive silica sources, Chem. Mater., 2000, vol. 12, pp. 1937–1940.

    Article  Google Scholar 

  46. Kim, W.J., Yoo, J.Ch., and Hayhurst, D.T., Synthesis of hydrothermally stable MCM-41 with initial adjustment of pH and direct addition of NaF, Microporous Mesoporous Mater., 2000, vol. 39, pp. 177–186.

    Article  Google Scholar 

  47. Landry, C.C., Tolbert, S.H., Gallis, K.W., Monnier, A., Stucky, G.D., Norby, P., and Hanson, J.C., Phase transformations in mesostructured silica/surfactant composites: Mechanisms for change and applications to materials synthesis, Chem. Mater., 2001, vol. 13, pp. 1600–1608.

    Article  Google Scholar 

  48. Johansson, E.M., Cordoba, J.M., and Oden, M., Synthesis and characterization of large mesoporous silica SBA-15 sheets with ordered accessible 18 nm pores, Mater. Lett., 2009, vol. 63, pp. 2129–2131.

    Article  Google Scholar 

  49. Cao, L., Man, T., and Kruk, M., Synthesis of ultralarge-pore SBA-15 silica with two-dimensional hexagonal structure using triisopropylbenzene as micelle expander, Chem. Mater., 2009, vol. 21, pp. 1144–1153.

    Article  Google Scholar 

  50. Johansson, E.M., Cordoba, J.M., and Oden, M., The effects on pore size and particle morphology of heptane additions to the synthesis of mesoporous silica SBA-15, Microporous Mesoporous Mater., 2010, vol. 133, pp. 66–74.

    Article  Google Scholar 

  51. Jiang, T., Tao, H., Ren, J., Liu, X., Wang, Y., and Lu, G., Fluoride ions assistant synthesis of extremely hydrothermal stable Al-SBA-15 with controllable Al content, Microporous Mesoporous Mater., 2011, vol. 142, pp. 341–346.

    Article  Google Scholar 

  52. Jin, Z., Wang, X., and Cui, X., Acidity-dependent mesostructure transformation of highly ordered mesoporous silica materials during a two-step synthesis, J. Non-Cryst. Solids, 2007, vol. 353, pp. 2507–2514.

    Article  Google Scholar 

  53. Kirik, S.D., Belousov, O.V., Parfenov, V.A., and Vershinina, M.A., System approach to analysis of the role of the synthesis components and stability of the MCM-41 mesostructured silicate material, Glass Phys. Chem., 2005, vol. 31, no. 4, pp. 439–451.

    Article  Google Scholar 

  54. Parfenov, V.A. and Kirik, S.D., Effect of reaction medium on hydrothermal stability of mesostructured silicate material MCM-41, Chem. Sustainable Dev., 2003, no. 11, pp. 735–740.

    Google Scholar 

  55. Parfenov, V.A. and Kirik, S.D., A detailed investigation into changes of the framework of the mesostructured silicate material MCM-41 at the main stages of its formation by the X-ray diffraction method, Poverkhnost, 2006, no. 2, pp. 6–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Parfenov.

Additional information

Original Russian Text © V.A. Parfenov, I.V. Ponomarenko, S.M. Zharkov, S.D. Kirik, 2014, published in Fizika i Khimiya Stekla.

Published from the Proceedings of the II International Conference of the CIS “Sol-Gel Synthesis and Study of Inorganic Compounds, Hybrid Functional Materials, and Disperse Systems,” held in Sevastopol’, Ukraine, on September, 18–20, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parfenov, V.A., Ponomarenko, I.V., Zharkov, S.M. et al. Controlling the microporosity of SBA-15 silicate material by background salt solution. Glass Phys Chem 40, 69–78 (2014). https://doi.org/10.1134/S1087659614010179

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659614010179

Keywords

Navigation