Glass Physics and Chemistry

, Volume 39, Issue 6, pp 639–642 | Cite as

Effect of time on the formation of hydroxyapatite in PEO process with hydrothermal treatment of the Ti-6Al-4V alloy

  • A. Kossenko
  • S. Lugovskoy
  • N. Astashina
  • A. Lugovskoy
  • M. Zinigrad
Article

Abstract

A titania layer containing calcium and phosphate with rough and porous structure was prepared by plasma electrolytic oxidation (PEO) and hydrothermal treatment (HT) at different time treatment. The most corresponding to the stoichiometry of hydroxiapatite ratio of Ca: P in the oxide layer can be achieved by the optimization of the electrolyte composition and the main parameters of PEO. While at the stage of PEO hydroxiaptite precursors are formed with only residual quantity of the hydroxyapatite, the subsequent hydrothermal treatment results in the formation of a much more pronounced hydroxyapatite phase.

Keywords

plasma electrolytic oxidation hydroxyapatite oxide layers biomaterials osseointegration 

References

  1. 1.
    Han, Y. and Xu, K., Photoexcited formation of bone apatite-like coatings on micro-arc oxidized titanium, J. Biomed. Mater. Res., Part A, 2004, vol. 71A, no. 4, pp. 608–614.CrossRefGoogle Scholar
  2. 2.
    Song, W.H., Jun, Y.K., Han, Y., and Hong, S.H., Biomimetic apatite coatings on micro-arc oxidized titania, Biomaterials, 2004, vol. 25, pp. 3341–3349.CrossRefGoogle Scholar
  3. 3.
    Nie, X., Leyland, A., and Matthews, A., Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis, Surf. Coat. Technol., 2000, vol. 125, pp. 407–414.CrossRefGoogle Scholar
  4. 4.
    Li, Y., Lee, I.S., Cui, F.Z., and Choi, S.H., The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium, Biomaterials, 2008, vol. 29, pp. 2025–2032.CrossRefGoogle Scholar
  5. 5.
    Wei, D., Zhou, Y., Jia, D., and Wang, Y., Chemical treatment of TiO2-based coatings formed by plasma electrolytic oxidation in electrolyte containing nano-HA, calcium salts, and phosphates for biomedical applications, Appl. Surf. Sci., 2008, vol. 254, pp. 1775–1782.CrossRefGoogle Scholar
  6. 6.
    Feng, C.F., Khor, K.A., Liu, E.J., and Cheang, P., Phase transformations in plasma sprayed hydroxyapatite coatings, Scr. Mater., 2000, vol. 42, pp. 103–109.CrossRefGoogle Scholar
  7. 7.
    Yang, Y.C., Chang, E.W., Hwang, B.H., and Lee, S.Y., Biaxial residual stress states of plasma-sprayed hydroxyapatite coatings on titanium alloy substrate, Biomaterials, 2000, vol. 21, pp. 1327–1337.CrossRefGoogle Scholar
  8. 8.
    Zheng, X.B., Huang, M.H., and Ding, C.X., Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings, Biomaterials, 2000, vol. 21, pp. 841–849.CrossRefGoogle Scholar
  9. 9.
    Hsieh, M.F., Perng, L.H., and Chin, T.S., Hydroxyapatite coating on Ti-6Al-4V alloy using a sol-gel derived precursor, Mater. Chem. Phys., 2002, vol. 74, pp. 245–250.CrossRefGoogle Scholar
  10. 10.
    Milella, E., Cosentino, F., Licciulli, A., and Massaro, C., Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by the sol-gel process, Biomaterials, 2001, vol. 22, pp. 1425–1431.CrossRefGoogle Scholar
  11. 11.
    Chen, X.L., Filiag, M., and Rosco, S.G., Electrochemically assisted coprecipitation of protein with calcium phosphate coatings on titanium alloy, Biomaterials, 2004, vol. 25, pp. 5395–5403.CrossRefGoogle Scholar
  12. 12.
    Zhang, Q.Y., Leng, Y., and Xin, R.L., A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium, Biomaterials, 2005, vol. 26, pp. 2857–2865.CrossRefGoogle Scholar
  13. 13.
    Eliaz, N., Sridhar, T.M., Kamachi Mudali, U., and Baldev, R., Electrochemical and electrophoretic deposition of hydroxyapatite for orthopedic applications, Surf. Eng., 2005, vol. 21, pp. 238–242.CrossRefGoogle Scholar
  14. 14.
    De Sena, L.A., de Andrade, M.C., Malta Rossi, A., and de Almeida Soares, G., Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing, J. Biomed. Mater. Res., 2002, vol. 60, no. 1, pp. 1–7.CrossRefGoogle Scholar
  15. 15.
    Williams, D.F. and Meachim, G., A combined metallurgical and histological study of tissue-prosthesis interactions in orthopedic patients, J. Biomed. Mater. Res., 1974, vol. 8, no. 3, pp. 1–9.CrossRefGoogle Scholar
  16. 16.
    Van Noort, R., Titanium: The implant material of today, J. Mater. Sci., 1987, vol. 22, no. 11, pp. 3801–3811.CrossRefGoogle Scholar
  17. 17.
    Montazeri, M., Dehghanian, C., Shokouhfar, M., and Baradaran, A., Investigation of the voltage and time effects on the formation of hydroxyapatite-containing titania prepared by plasma electrolytic oxidation on Ti-6Al-4V alloy and its corrosion behavior, Appl. Surf. Sci., 2001, vol. 257, pp. 7268–7275.CrossRefGoogle Scholar
  18. 18.
    Hanawa, T., Kon, M., Doi, H., Ukai, H., Murakami, K., Hamanaka, H., and Asaoka, K., Amount of hydroxyl radical on calcium-ion-implanted titanium and point of zero charge of constituent oxide of the surface-modified layer, J. Mater. Sci.: Mater. Med., 1998, vol. 9, no. 2, pp. 89–92.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. Kossenko
    • 1
  • S. Lugovskoy
    • 1
  • N. Astashina
    • 2
  • A. Lugovskoy
    • 1
  • M. Zinigrad
    • 1
  1. 1.Ariel University, Scientific ParkArielIsrael
  2. 2.Perm State Academy of Medicine named after Academician E.A. Wagner Ministry of HealthPermRussia

Personalised recommendations