Skip to main content
Log in

Gruneisen parameter and fluctuation volume of amorphous polymers and glass

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The Gruneisen parameter of glassy polymers and inorganic glass is a linear function of the fraction of the fluctuation volume that is frozen at the glass transition temperature. The nature of an interrelation between linear and nonlinear properties of solids, in particular, between the Gruneisen parameter and Poisson’s ratio is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belomestnykh, V.N., The acoustical Grüneisen constants of solids, Tech. Phys. Lett., 2004, vol. 30, no. 2, pp. 91–93.

    Article  CAS  Google Scholar 

  2. Belomestnykh, V.N. and Tesleva, E.P., Interrelation between anharmonicity and lateral strain in quasi-isotropic polycrystalline solids, Tech. Phys., 2004, vol. 49, no. 8, pp. 1098–1100.

    Article  CAS  Google Scholar 

  3. Sanditov, D.S. and Kozlov, G.V., Anharmonicity of interatomic and intermolecular bonds and physicomechanical properties of polymer glasses, Glass Phys. Chem., 1995, vol. 21, no. 6, pp. 392–409.

    CAS  Google Scholar 

  4. Kozlov, G.V. and Sanditov, D.S., Angarmonicheskie effekty i fiziko-mekhanicheskie svoistva polimerov (Anharmonic Effects and Physicomechanical Properties of Polymers), Novosibirsk: Nauka, 1994.

    Google Scholar 

  5. Mikitishin, S.I., Interrelationship of Poisson’s ratio with other characteristics of pure metals, Fiz.Khim. Mekh. Mater., 1982, vol. 18, no. 3, pp. 84–88.

    Google Scholar 

  6. Perepechko, I.I., Svoistva polimerov pri nizkikh temperaturakh (Properties of Polymers at Low Temperatures), Moscow: Khimiya, 1977.

    Google Scholar 

  7. Sanditov, D.S., Badmaev, S.S., Mel’nichenko, T.N., and Sanditov, B.D., On the critical displacement of excited kinetic units in liquids and glasses, Glass Phys. Chem., 2007, vol. 33, no. 1, pp. 37–43.

    Article  CAS  Google Scholar 

  8. Sanditov, D.S., Model of delocalized atoms in the physics of the vitreous state, JETP, 2012, vol. 115, no. 1, pp. 112–124.

    Article  CAS  Google Scholar 

  9. Sanditov, D.S., The excited state model and an elementary act of softening of glassy solids, JETP, 2009, vol. 108, no. 1, pp. 98–110.

    Article  CAS  Google Scholar 

  10. Kurkjian, C.R., Krause, J.T., McSkimin, H.J., Andreatch, P., and Bateman, T.B., Pressure dependence of elastic constants and Grüneisen parameters fused SiO2, GeO2, BeF2, and B2O3, in Amorphous Materials, Dauglas, R.W. and Ellis, B., Eds., New York: Wiley-Interscience, 1972, pp. 463–473.

    Google Scholar 

  11. Barker, R.E., An approximate relation between elastic module and thermal expansivities, J. Appl. Phys., 1963, vol. 34, no. 1, pp. 107–116.

    Article  CAS  Google Scholar 

  12. Kontorova, T.A., On the relationship between the mechanical and thermal characteristics of crystals, in Nekotorye problemy prochnosti tverdykh tel (Some Problems of the Strength of Solids), Moscow: Academy of Sciences of the Soviet Union, 1959, pp. 99–107.

    Google Scholar 

  13. Zhuze, V.P. and Kontorova, T.A., On the correlation between the hardness and the thermal conductivity of non-metallic crystals, Sov. Phys.Tech. Phys., 1958, vol. 3, no. 8, pp. 646–651.

    Google Scholar 

  14. Kontorova, T.A., On the thermal expansion and thermal conductivity of some crystals, Zh. Tekh. Fiz., 1956, vol. 26, no. 9, pp. 2021–2028.

    CAS  Google Scholar 

  15. Sanditov, D.S. and Bartenev, G.M., Fizicheskie svoistva neuporyadochennykh struktur (Physical Properties of Disordered Structures), Novosibirsk: Nauka, 1982.

    Google Scholar 

  16. Frenkel, J., Kinetic Theory of Liquids, Fowler, R.H., Kapitza, P.L., and Mott, N.F., Eds., Oxford: Oxford University Press, 1947. Translated under the title Kineticheskaya teoriya zhidkostei, Moscow: Nauka, 1975.

  17. Coenen, M., Sprung im ausdehnungs koeffizienten und leerstellen konzent ration bei T g von glasigen systemen, Glastech. Ber., 1977, vol. 50, no. 4, pp. 74–78.

    CAS  Google Scholar 

  18. Nemilov, S.V., Romanova, N.V., and Krylova, L.A., Kinetics of elementary processes in the condensed state: V. The volume of units activated on the viscous flow of silicate glasses, Zh. Fiz. Khim., 1969, vol. 43, no. 8, pp. 2131–2134.

    CAS  Google Scholar 

  19. Sanditov, D.S. and Kozlov, G.V., On the linear correlation between the modulus of elasticity and the glass transition temperature of amorphous polymers and glasses, Glass Phys. Chem., 1993, vol. 19, no. 4, pp. 593–601.

    CAS  Google Scholar 

  20. Livshits, V.Ya., Tennison, D.G., Gukasyan, S.B., and Kostanyan, A.K., Acoustic and elastic properties of glasses in the Na2O-Al2O3-SiO2 system, Sov. J. Glass Phys. Chem., 1982, vol. 8, no. 6, pp. 463–468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Sanditov.

Additional information

Original Russian Text © B.D. Sanditov, S.Sh. Sangadiev, D.S. Sanditov, 2013, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanditov, B.D., Sangadiev, S.S. & Sanditov, D.S. Gruneisen parameter and fluctuation volume of amorphous polymers and glass. Glass Phys Chem 39, 382–389 (2013). https://doi.org/10.1134/S1087659613040172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659613040172

Keywords

Navigation