Skip to main content
Log in

Calculation of the properties of raw briquet for producing foam glass in the temperature range of preheating

  • Short Communications
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The suggested method allows for the calculation of a temperature dependence of the density, thermal conductivity, and specific thermal capacity of a raw briquet (from glass powder) during preheating in the course of foam glass production. The properties of the raw briquet were determined based on the structure and chemical composition of the raw material (glass). The resulting dependences can be used to solve the problems of heat-mass exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Demidovich, B.K., Penosteklo (Foamglass), Minsk: Nauka i Tekhnika, 1975.

    Google Scholar 

  2. Baranov, E.V., Technology for the production of heat-insulating materials based on the use of the effect of swelling and on the porization of the watered technogenic glass, Candidate’s Dissertation in Chemistry, Voronezh, 2006.

    Google Scholar 

  3. Baranov, E.V., Shelkovnikova, T.I., and Chernyshov, E.M., New technological principle of the porization and swelling of the glass during the preparation of lightweight fillers, in Vestnik tsentral’nogo regional’nogo otdeleniya Rossiiskoi akademii arkhitektury i stroitel’nykh nauk (Bulletin of the Central Regional Branch of the Russian Academy of Architecture and Building Sciences), Voronezh, 2009, pp. 95–102.

    Google Scholar 

  4. Kheifets, L.I. and Neimark, A.V., Mnogofaznye protsessy v poristykh sredakh (Multiphase Processes in Porous Media), Moscow: Khimiya, 1982.

    Google Scholar 

  5. Appen, A.A., Khimiya stekla (The Chemistry of Glass), Leningrad: Khimiya, 1974.

    Google Scholar 

  6. Fiziko-khimicheskie osnovy proizvodstva opticheskogo stekla (Physicochemical Foundations of the Production of Optical Glasses), Demkina, L.I., Ed., Leningrad: Khimiya, 1976.

    Google Scholar 

  7. Schmelzer, J.W.P., Gutzow, I.S., Mazurin, O.V., Todorova, S.V., Petroff, B.B., and Priven, A.I., Glasses and the Glass Transition, Weinheim, Germany: Wiley-VCH, 2011.

    Book  Google Scholar 

  8. Properties of Glass-Forming Melts, David Pye, L., Montenaro, A., and Joseph, I., Eds., Boca Raton, Florida, United States: CRC Press, 2005.

    Google Scholar 

  9. Fluegel, A., Glass viscosity calculation based on a global statistical modeling approach, Glass Technol.—Eur. J. Glass Sci. Technol., Part A, 2007, vol. 48, no. 1, pp. 13–30.

    CAS  Google Scholar 

  10. Demkina, L.I., A scheme for calculating the refractive index, main dispersion, and density of optical silicate glasses, Fiz. Khim. Stekla, 1994, vol. 20, no. 5, pp. 639–653.

    CAS  Google Scholar 

  11. Fluegel, A., Global model for calculating room-temperature glass density from the composition, J. Am. Ceram. Soc., 2008, vol. 90, no. 8, pp. 2622–2625.

    Article  Google Scholar 

  12. Mazurin, O.V., Strel’tsina, M.V., and Shvaiko-Shvaikovskaya, T.P., Svoistva stekol i stekloobrazuyushchikh rasplavov. Spravochnik: Tom III, chast’ 1. Trekhkomponentnye silikatnye sistemy (A Reference Book on Properties of Glasses and Glass-Forming Melts: Volume III, Part 1. Three-Component Silicate Systems), Leningrad: Nauka, 1977.

    Google Scholar 

  13. Spravochnik po proizvodstvu stekla (A Reference Book on the Production of Glasses), Kitaigorodskii, I.I. and Sil’vestrovich, S.I., Eds., Moscow: Gosstroiizdat, 1963, vol. 1.

    Google Scholar 

  14. Gudovich, O.D. and Primenko, V.I., Calculation of the heat capacity of silicate glasses and melts, Fiz. Khim. Stekla, 1985, vol. 11, no. 3, pp. 349–355.

    CAS  Google Scholar 

  15. Primenko, V.I. and Galyant, V.I., Calculation of the true heat capacity of silicate glasses, Steklo Keram., 1988, no. 4, pp. 9–10.

    Google Scholar 

  16. Stebbins, J.F., Carmichael, I.S.E., and Moret, L.K., Heat capacities and entropies of silicate liquids and glasses, Contrib. Mineral. Petrol., 1984, vol. 86, pp. 131–148.

    Article  CAS  Google Scholar 

  17. Mikheev, M.A. and Mikheeva, I.M., Osnovy teploperedachi (Fundamentals of Heat Transfer), Moscow: Energiya, 1977.

    Google Scholar 

  18. Lykov, A.V., Yavleniya perenosa v kapillyarno-poristykh telakh (Transport Phenomena in Capillary-Porous Bodies), Moscow: State Publishing House of Technical and Theoretical Literature, 1954.

    Google Scholar 

  19. Cellular and Porous Materials, Öchsner, A., Murch, G.E., and de Lemos, M.J.S., Eds., Weinheim, Germany: Wiley-VCH, 2008.

    Google Scholar 

  20. Cellular Ceramics: Structure, Manufacturing, Properties, and Applications, Scheffler, M. and Colombo, P., Weinheim, Germany: Wiley-VCH, 2005.

    Google Scholar 

  21. GOST R (State Standard) 52022-2003: Glass containers for food, perfume, and cosmetic products. Types of glasses, Moscow: Gosstandart of Russia, 2006.

  22. Demin, A.M., Mathematical modeling of preheating the foam glass green body in the course of cellular glass production, Vestn. Grazhdanskikh Inzh., 2013, no. 1, pp. 166–172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Demin.

Additional information

Original Russian Text © A.M. Demin, 2013, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demin, A.M. Calculation of the properties of raw briquet for producing foam glass in the temperature range of preheating. Glass Phys Chem 39, 462–466 (2013). https://doi.org/10.1134/S1087659613040081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659613040081

Keywords

Navigation