Skip to main content
Log in

Destabilization of sol of aerosil OX-50 in solutions of surfactants. II. Aerosil OX-25 in solutions of cationic and nonionic surfactants

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The aggregate stability of the sol of Aerosil OX-50 in solutions of cationic surfactants (SAS) of cetyldimethylethylammonium bromide (CDEAB) and cetyltrimethylammonium bromide (CTAB), as well as nonionic SAS alkylphenyl ethers of ethylene glycol, has been studied. Destabilization of the sol in the solutions of SAS was considered in the terms of the balance of surface forces and with regard to the hydrophobic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golikova, E.V., Ioganson, O.M., and Grigor’ev, V.S., Destabilization of the sol aerosil OX-50 in solutions of surfactants: I. Aerosil OX-50 in solutions of sodium dodecyl sulfate, Glass Phys. Chem., 2013, vol. 39, no. 2 (in press).

    Google Scholar 

  2. Israelachvili, J.M., Pashley, R.M., Perer, E., and Tandon, R.K., Forces between hydrophobic surfaces in aqueous electrolyte and surfactant solutions containing common air-borne impurities, Colloids Surf., 1981, vol. 2, no. 3, pp. 287–291.

    Article  CAS  Google Scholar 

  3. Israelachvili, J.N. and Christenson, H.K., Liquid structure and the short-range forces between surfaces in liquids, Physica A (Amsterdam), 1986, vol. 140, nos. 1–2, pp. 278–284.

    Article  Google Scholar 

  4. Israelachvili, J. and Pashley, R., The hydrophobic interaction is long-range, decaying exponentially with distance, Nature (London), 1982, vol. 300, no. 5890, pp. 341–342.

    Article  CAS  Google Scholar 

  5. Israelachvili, J. and Pashley, R., Measurement of hydrophobic interaction between two hydrophobic surface in aqueous electrolyte solutions, J. Colloid Interface Sci., 1984, vol. 98, no. 2, pp. 500–514.

    Article  CAS  Google Scholar 

  6. Claesson, P.M. and Cristenson, H.K., Very long attractive forces between uncharged hydrocarbon and fluorocarbon surfaces in water, J. Phys. Chem., 1988, vol. 92, no. 6, pp. 1650–1655.

    Article  CAS  Google Scholar 

  7. Rabinovich, Ya.I., Deryagin, B.V., Rabinovich, Ya.I., Deryagin, B.V., and Churaev, N.V., Direct measurements of the forces of attraction hydrophobic silica fibers in solutions of KCl, Kolloidn. Zh., 1987, vol. 49, no. 2, pp. 304–308.

    CAS  Google Scholar 

  8. Rabinovich, Ya.I. and Derjaguin, B.V., Interaction of hydrophobized filaments in aqueous electrolyte solutions, Colloids Surf., 1988, vol. 30, pp. 243–251.

    CAS  Google Scholar 

  9. Rabinovich, Ya.I. and Yoon, R.H., Use of atomic force microscope for the measurements of hydrophobic forces, Colloids Surf., 1994, vol. 93, pp. 263–273.

    Article  CAS  Google Scholar 

  10. Yoon, R.H., Flinn, D.H., and Rabinovich, Ya.I., Hydrophobic interactions between dissimilar surfaces, J. Colloid Interface Sci., 1997, vol. 185, pp. 363–370.

    Article  CAS  Google Scholar 

  11. Rabinovich, Ya.I. and Yoon, R.H., Use of atomic force microscope for the measurements of hydrophobic forces between silanated silica plate and glass sphere, Langmuir, 1994, vol. 10, no. 6, pp. 1903–1909.

    Article  CAS  Google Scholar 

  12. Churaev, N.V., Surface forces and physicochemistry of surface phenomena, Usp. Khim., 2004, vol. 73, no. 1, pp. 26–38.

    Article  Google Scholar 

  13. Christenson, H.K. and Claesson, P.M., Direct measurements of the force between hydrophobic surfaces in water, Adv. Colloid Interface Sci., 2001, vol. 91, no. 3, pp. 391–436.

    Article  CAS  Google Scholar 

  14. Hough, B. and Rendall, H.M., Adsorption of ionic surfactants, in Adsorption from Solutions on the Solid/Liquid Interface, Parfitt, G. and Rochester, C., Eds., London: Academic, 1983. Translated under the title Adsorbtsiya iz rastvorov na poverkhnosti tverdykh tel, Moscow: Mir, 1986, pp. 289–367.

    Google Scholar 

  15. Bitting, D., Effects of counterions on surfactants surface aggregates at the alumine/aqueouss solution interface, Langmuir, 1987, vol. 3, nos. 4–5, pp. 500–511.

    Article  CAS  Google Scholar 

  16. Bijsterboch, B.N., Characterization of silica surface by adsorption of cationic surfactants, J. Colloid Interface Sci., 1974, vol. 47, no. 1, pp. 186–198.

    Article  Google Scholar 

  17. Muller, V.M., Sergeeva, I.P., and Churaev, N.V., Adsorption of ionic surfactants on the charged surface: Two models, Kolloidn. Zh., 1995, vol. 57, no. 3, pp. 368–371.

    Google Scholar 

  18. Muller, V.M., Zakharova, M.A., Sobolev, V.D., and Churaev, N.V., Adsorption of CTAB from aqueous solutions on fused silica, Kolloidn. Zh., 1995, vol. 57, no. 3, pp. 400–406.

    Google Scholar 

  19. Clunie, J.S. and Ingram, B.T., Adsorption of nonionic surfactants, in Adsorption from Solutions on the Solid/Liquid Interface, Parfitt, G. and Rochester, C., Eds., London: Academic, 1983. Translated under the title Adsorbtsiya iz rastvorov na poverkhnosti tverdykh tel, Moscow: Mir, 1986, pp. 127–181.

    Google Scholar 

  20. Klimenko, N.A., Influence of micelle formation in aqueous solutions on the adsorption of oxyethylated nonionic surfactants in the carbon non-porous adsorbent (acetylene soot), Kolloidn. Zh., 1980, vol. 42, no. 3, pp. 561–566.

    CAS  Google Scholar 

  21. Mukerjee, R. and Mysels, K.J., Critical Micelle Concentrations of Aqueous Surfactant Systems, Washington: U.S. National Bureau of Standards, 1971.

    Google Scholar 

  22. Shinoda, K., Nakagawa, T., Tamamusi, B., and T. Isemura, T., Colloidal Surfactants, New York: Academic, 1963. Translated under the title Kolloidye poverkhnostno-aktivnye veshchestva, Moscow: Mir, 1966.

    Google Scholar 

  23. Koganovskii, A.M., Levchenko, T.M., and Kirichenko, V.A., Adsorbtsiya rastvorennykh veshchestv, (Adsorption of Dissolved Substances), Kiev: Naukova Dumka, 1977.

    Google Scholar 

  24. Koganovskii, A.M. and Klimenko, N.A., Fizikokhimicheskie osnovy izvlecheniya poverkhnostnoaktivnykh veshchestv iz vodnykh rastvorov i stochnykh vod (Physico-Chemical Fundamentals of the Extraction of Surfactants from Aqueous Solutions and Wastewater), Kiev: Naukova Dumka, 1978.

    Google Scholar 

  25. Pilgrimm, H., Aerosil-electrolyt-phasengrenze ohne anwesenheit vonbasenkationen, Colloid Polym. Sci., 1981, vol. 259, no. 6, pp. 1111–1115.

    Article  CAS  Google Scholar 

  26. Sonntag, H., Itschenskij, V., and Koleznikova, R., Electrochemical characterization of aerosil OX-50 dispersions, Croat. Chem. Acta, 1987, vol. 60, no. 3, pp. 383–393.

    CAS  Google Scholar 

  27. Ermakova, L.E., Sidorova, M.P., Bogdanova, N.F., and Borisova, M.N., Electrochemical characteristics of silicon and titanium oxides and titanium-containing oxygen nanostructures on silica substrates, Colloid J., 1999, vol. 61, no. 6, pp. 714–718.

    CAS  Google Scholar 

  28. Gun’ko, V.M., Zarko, V.I., Leboda, R., and Chibowski, E., Aqueous suspensions of fumed oxides: Particle size distribution and zeta potential, Adv. Colloid Interface Sci., 2001, vol. 91, no. 1, pp. 1–112.

    Article  Google Scholar 

  29. Sergacheva, I.P., Ermakova, T.B., Sobolev, V.D., and Churaev, N.V., Strukt. Din. Mol. Sist., 2003, issue X, part 3, pp. 49–52.

    Google Scholar 

  30. Vinogradova, O.I., On the attachment of particles of different degrees of hydrophobicity to a bubble in the collision, Kolloidn. Zh., 1993, vol. 55, no. 4, pp. 21–29.

    CAS  Google Scholar 

  31. Yakubov, G.E., Butt, H.J., and Vinogradova, O.I., Interaction forces between hydrophobic surfaces. attractive jump as an indication of formation of “stable” submicrocavities, J. Phys. Chem. B, 2000, vol. 104, no. 15, pp. 3407–3410.

    Article  CAS  Google Scholar 

  32. Koishi, T., Yasuoka, K., Ebisuzaki, T., Yoo, S., and Zeng, X.C., Large-scale molecular-dynamics simulation of nanoscale hydrophobic interaction and nanobubble formation, J. Chem. Phys., 2005, vol. 123, p. 204707.

  33. Shutilov, V.A., Osnovy fiziki ul’trazvuka. Uchebnoe posobie, Leningrad: Leningrad State University, 1980. Translated under the title Fundamental Physics of Ultrasound, London: Gordon and Breach, 1988.

    Google Scholar 

  34. Bunkin, N.F. and Bunkin, F.V., Bubbstons: stable microscopic gas bubbles in very dilute electrolytic solutions, Sov. Phys. JETP, 1992, vol. 74, no. 2, pp. 271–278.

    Google Scholar 

  35. Muller, V.M., The theory of reversible coagulation, Colloid J., 1996, vol. 58, no. 5, pp. 598–611.

    CAS  Google Scholar 

  36. Ishida, N., Sakamoto, M., Miyahara, M., and Higashitani, K., Attraction between hydrophobic surfaces with and without gas phase, Langmuir, 2000, vol. 16, no. 13, pp. 5681–5687.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Golikova.

Additional information

Original Russian Text © E.V. Golikova, O.M. Ioganson, V.S. Grigor’ev, 2013, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golikova, E.V., Ioganson, O.M. & Grigor’ev, V.S. Destabilization of sol of aerosil OX-50 in solutions of surfactants. II. Aerosil OX-25 in solutions of cationic and nonionic surfactants. Glass Phys Chem 39, 301–307 (2013). https://doi.org/10.1134/S1087659613030085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659613030085

Keywords

Navigation