Skip to main content
Log in

Nanocomposites based on silver iodide and aluminum oxide

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Nanocomposites based on AgI and Al2O3 have been obtained using the techniques of chemical condensation, mechanical treatment, and crystallization. The size of the particles is estimated using the scanning-electron-microscopy technique. After mechanical treatment and crystallization, the AgI composite is composed of nanoparticles of silver iodide, which are localized in the shells of nanocrystalline aluminum oxide. The size of the particles and the thickness of the shells are determined. The results are discussed based on considerations that describe the microscopic mechanisms responsible for the formation of silver iodide nanocrystals in the process of mechanical treatment and crystallization. It is shown that the shape and structure of the composite nanoparticles change depending on the method and conditions of their production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eggins, B.R., Chemical Sensors and Biosensors, New York: Wiley, 2002. Translated under the title Khimicheskie i biologicheskie sensory, Moscow: Tekhnosfera, 2005.

    Google Scholar 

  2. Wiegleb, G., Industrielle Gassensorik, Berlin: Expert, 1988. Translated under the title Datchiki, Moscow: Mir, 1989.

    Google Scholar 

  3. Göpel, W., New Materials and Transducers for Chemical Sensors, Sens. Actuators, B, 1994, vols. 18–19, pp. 1–21.

    Article  Google Scholar 

  4. Gas’kov, A.M. and Rumyantseva, M.N., Materials for Solid-State Gas Sensors, Inorg. Mater., 2000, vol. 36, no. 3, pp. 293–301.

    Article  Google Scholar 

  5. Davydov, S.Yu., Moshnikov, V.A., and Tomaev, V.V., Adsorbtsionnye yavleniya v polikristallicheskikh poluprovodnikovykh sensorakh (Adsorption Phenomena in Polycrystalline Semiconductor Sensors), St. Petersburg: Saint Petersburg Electrotechnical University “LETI,” 1988.

    Google Scholar 

  6. Yaroslavtsev, A.B., Khimiya tverdogo tela (Chemistry of the Solid State), Moscow: Nauchnyi Mir, 2009.

    Google Scholar 

  7. Liang, C.C., Conduction Characteristics of the Lithium Iodide-Aluminum Oxide Solid Electrolytes, J. Electrochem. Soc., 1973, vol. 120, no. 10, pp. 1289–1292.

    Article  CAS  Google Scholar 

  8. Maier, J., Thermodynamic Aspects and Morphology of Nano-Structured Ion Conductors: Part I. Aspects of Nanoionics, Solid State Ionics, 2002, vols. 154–155, pp. 291–301.

    Article  Google Scholar 

  9. Maier, J., Defect Chemistry and Ion Transport in Nanostructured Materials: Part II. Aspects of Nanoionics, Solid State Ionics, 2003, vol. 157, pp. 327–334.

    Article  CAS  Google Scholar 

  10. Maier, J., Nano-Sized Mixed Conductors: Part III. Aspects of Nanoionics, Solid State Ionics, 2002, vol. 148, pp. 367–374.

    Article  CAS  Google Scholar 

  11. Sata, N., Jin-Phillipp, N.Y., Eberl, K., and Maier, J., Enhanced Ionic Conductivity and Mesoscopic Size Effects in Hetero-Structures of BaF2 and CaF2, Solid State Ionics, 2002, vols. 154–155, pp. 497–502.

    Article  Google Scholar 

  12. Lee, J.-S., Adams, St., and Maier, J., A Mesoscopic Heterostructure as the Origin of the Extreme Ionic Conductivity in AgI: Al2O3, Solid State Ionics, 2000, vols. 136–137, pp. 1261–1266.

    Article  Google Scholar 

  13. Aniya, M. and Kawamura, J., Medium-Range Structure and Activation Energy of Ion Transport in Glasses, Solid State Ionics, 2002, vols. 154–155, pp. 343–348.

    Article  Google Scholar 

  14. Ukshe, E.A. and Bukun, N.G., Tverdye elektrolity (Solid Electrolytes), Moscow: Nauka, 1977.

    Google Scholar 

  15. Uvarov, N.F., Stabilization of Amorphous Phases in Ion-Conducting Composites, Russ. J. Appl. Chem., 2000, vol. 73, no. 6, pp. 1030–1035.

    Google Scholar 

  16. Uvarov, N.F. and Boldyrev, V.V., Size Effects in the Chemistry of Heterogeneous Systems, Usp. Khim., 2001, vol. 70, no. 4, pp. 970–975.

    Article  Google Scholar 

  17. Uvarov, N.F., Ionics of Nanoheterogeneous Materials, Usp. Khim., 2007, vol. 76, no. 5, pp. 454–473.

    Article  Google Scholar 

  18. Gurevich, Yu.Ya. and Kharkats, Yu.I., Features of the Thermodynamics of Superionic Conductors, Sov. Phys.-Usp., 1982, vol. 25, no. 4, pp. 257–276.

    Article  Google Scholar 

  19. Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, and Nanotechnologies), Moscow: Nauka, 2007.

    Google Scholar 

  20. Suzdalev, I.P., Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology: Physics and Chemistry of Nanoclusters, Nanostructures, and Nanomaterials), Moscow: KomKniga, 2006.

    Google Scholar 

  21. Poole, C.P., Jr. and Owens, F.J., Introduction to Nanotechnology, New York: Wiley, 2003. Translated under the title Nanotekhnologii, Moscow: Tekhnosfera, 2006.

    Google Scholar 

  22. Avakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Methods for Activation of Chemical Processes), Novosibirsk: Nauka, 1986.

    Google Scholar 

  23. Butyagin, P.Yu., Problems in Mechanochemistry and Prospects for Its Development, Usp. Khim., 1994, vol. 63, no. 12, pp. 1031–1043.

    Article  CAS  Google Scholar 

  24. Enikolopov, N.S., Solid-Phase Chemical Reactions and New Technologies, Usp. Khim., 1991, vol. 60, no. 3, pp. 586–594.

    Article  CAS  Google Scholar 

  25. Boldyrev, V.V., Mechanochemistry and Mechanical Activation of Solids, Usp. Khim., 2006, vol. 75, no. 3, pp. 203–216.

    Article  Google Scholar 

  26. Borisenko, V.E., Vorob’eva, A.I., and Utkina, E.A., Nanoelektronika (Nanoelectronics), Moscow: Binom, 2009.

    Google Scholar 

  27. Rambidi, N.G. and Berezkin, A.V., Fizicheskie i khimicheskie osnovy nanotekhnologii (Physical and Chemical Foundations of Nanotechnology), Moscow: Fizmatlit, 2009.

    Google Scholar 

  28. Powder Diffraction File PDF-2 Release 2012. http://www.icdd.com/products/pdf2.htm.

  29. Bal’makov, M.D., On the Microscopic Mechanism of Formation of Nanostructures in Condensed Media, Glass Phys. Chem., 2011, vol. 37, no. 2, pp. 157–160.

    Article  Google Scholar 

  30. Tomaev, V.V., Tver’yanovich, Yu.S., Bal’makov, M.D., Zvereva, I.A., and Missyul’, A.B., Ionic Conductivity of (As2Se3)1 − x (AgHal)x (Hal = I, Br) Nanocomposites, Glass Phys. Chem., 2010, vol. 36, no. 4, pp. 455–462.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tomaev.

Additional information

Original Russian Text © V.V. Tomaev, Yu.S. Tver’yanovich, M.D. Bal’makov, E.G. Zemtsova, 2013, published in Fizika i Khimiya Stekla.

Published on the materials of All-Russia Conference “Sol-Gel, Synthesis and Investigations into Inorganic Compounds, Hybrid Functional Materials, and Dispersed Systems.” Russia, St. Petersburg, November 22–24, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomaev, V.V., Tver’yanovich, Y.S., Bal’makov, M.D. et al. Nanocomposites based on silver iodide and aluminum oxide. Glass Phys Chem 39, 94–99 (2013). https://doi.org/10.1134/S1087659613010136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659613010136

Keywords

Navigation