Skip to main content
Log in

Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The theoretical and practical approaches to the formation of micro-optic elements (MOE) for the integrated optical communication on substrates made of different materials, including silicate glasses, have been reviewed. The applicability of high-silica porous glasses (PG) fabricated by a homogeneous acid leaching of two-phase alkali borosilicate glasses as basic matrices for laser formation of MOE of different types (microlenses and microchannels) has been discussed. It has been demonstrated that sintering laser-modified PGs at temperatures ensuring the collapse of the pore can be used to stabilize MOE optical properties. The results of choosing the time-temperature mode for sintering PG substrates with a planar MOE-strip waveguide (SW) providing the SW fixation on a completely sintered substrate were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borrelli, N.F., Microoptic Technology: Fabrication and Application of Lens Arrays and Devices, New York: Taylor and Francis, 1999, p. 353.

    Google Scholar 

  2. Motamedi, M.E. and Beiser, L., Micro-Optics/Micro-mechanics and Laser Scanning and Shaping, Proc. SPIE—Int. Soc. Opt. Eng., 1995, vol. 2383, pp. 224–233.

    Google Scholar 

  3. King, T.A., Laser and Ultrastructure Processing, in Chemical Processing of Advanced Material, Henon, L.L. and West, J.K., Eds., Gaineville (Florida, United States): University of Florida, 1992, pp. 997–1019.

    Google Scholar 

  4. Integrated Optics, Tamir, T., Ed., Heidelberg: Springer, 1975. Translated under the title Integral’naya optika, Moscow: Mir, 1978.

    Google Scholar 

  5. Herman, P.R., Marjoribanks, R.S., Oettl, A., Chen, K., Konovalov, I., and Ness, S., Laser Shapping of Photonic Materials: Deep-Ultraviolet and Ultrafast Lasers, Appl. Surf. Sci., 2000, vols. 154–155, pp. 577–586.

    Article  Google Scholar 

  6. Calixto, S. and Padilla, G.P., Micromirrors and Microlenses Fabricated on Polymer Materials by Means of Infrared Radiation, Appl. Opt., 1996, vol. 35, no. 31, pp. 6126–6130.

    Article  CAS  Google Scholar 

  7. Popovic, Z.D., Sprague, R.A., and Connell, G.A.N., Technique for Monolithic Fabrication of Microlens Arrays, Appl. Opt., 1988, vol. 27, no. 7, pp. 1281–1284.

    Article  CAS  Google Scholar 

  8. Haselbeck, S., Schreiber, H., Schwider, J., and Streibl, N., Microlenses Fabricated by Melting a Photoresist on a Base Layer, Opt. Eng., 1993, vol. 32, no. 6, pp. 1322–1324.

    Article  Google Scholar 

  9. Aksenov, E.T., Integral’naya optika dlya sistem obrabotki informatsii (Integrated Optics for Systems of Information Processing), St. Petersburg: St. Petersburg State Polytechnical University, 2005 [in Russian].

    Google Scholar 

  10. Mochtady, H., Yamada, K., Ueda, T., and Hosokawa, A., Fabrication of Cylindrical Plastic Microlens Using Er: YAG Laser Beam: Influence of Process Parameters, Proc. SPIE—Int. Soc. Opt. Eng., 2004, vol. 5662, pp. 243–248.

    Google Scholar 

  11. Meshkovskii, I.K., Kompozitsionnye opticheskie materialy na osnove poristykh matrits (Composite Optical Materials Based on Porous Matrices), St. Petersburg: St. Petersburg State Institute of Information Technologies, Mechanics, and Optics (Technical University), 1998 [in Russian].

    Google Scholar 

  12. Voznesenskaya, A.O., Meshkovskii, I.K., and Popov, O.S., Immersed Waveguides Based on Matrices of the Porous Glass DV-1M, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2003, vol. 46, no. 1, pp. 46–48.

    Google Scholar 

  13. Davis, K.M., Miura, K., Sugimoto, N., and Hirao, K., Writing Waveguides in Glass with a Femtosecond Laser, Opt. Lett., 1996, vol. 21, no. 21, pp. 1729–1731.

    Article  CAS  Google Scholar 

  14. Shimotsuma, Y., Kazansky, G.P., Qiu, J., and Hirao, K., Mechanisms and Applications of the Femtosecond Laser Induced Nanostructures, Proc. SPIE—Int. Soc. Opt. Eng., 2005, vol. 5713, pp. 137–146.

    Google Scholar 

  15. Streltsov, A.M. and Borrelli, N.F., Fabrication and Analysis of a Directional Coupler Written in Glass by Nanojoule Femtosecond Laser Pulses, Opt. Lett., 2001, vol. 26, no. 1, pp. 42–43.

    Article  CAS  Google Scholar 

  16. Ben-Yakar, A., Byer, R.L., Harkin, A., Ashmore, J., Stone, H.A., Shen, M., and Mazur, E., Morphology of Femtosecond-Laser-Ablated Borosilicate Glass Surfaces, Appl. Phys. Lett., 2003, vol. 83, no. 15, pp. 3030–3032.

    Article  CAS  Google Scholar 

  17. Kasaai, M.R., Kacham, V., Théberge, F., and Chin, S.L., The Interaction of Femtosecond and Nanosecond Laser Pulses with the Surface of Glass, J. Non-Cryst. Solids, 2003, vol. 319, no. 2, pp. 129–135.

    Article  CAS  Google Scholar 

  18. Kondo, Y., Nouchi, K., Mitsuyu, T., Watanabe, M., Kazansky, P.G., and Hirao, K., Fabrication of Long-Period Fiber Gratings by Focused Irradiation of Infrared Femtosecond Pulses, Opt. Lett., 1999, vol. 24, no. 10, pp. 646–648.

    Article  CAS  Google Scholar 

  19. Cumpston, B.H., Ananthavel, S.P., Barlow, S., Dyer, D.L., Ehrlich, J.E., Erskine, L.L., Heikal, A.A., Kuebuler, S.M., Sandy Lee, I.-Y., Maugon, D.M., Qin, J., Rokel, H., Rumi, M., Wu, X., Marder, S.R., and Perry, J.W., Two-Photon Polymerization Initiators for Three-Dimensional Optical Data Storage and Microfabrication, Nature (London), 1999, vol. 398, no. 6722, pp. 51–54.

    Article  CAS  Google Scholar 

  20. Shimotsuma, Y., Qiu, J., Kazansky, P.G., and Hirao, K., Fabrication of Nanograting Inside Transparent Materials by Using a Single Femtosecond Laser Beam, Proc. SPIE—Int. Soc. Opt. Eng., 2004, vol. 5662, pp. 173–178.

    CAS  Google Scholar 

  21. Sigaev, V.N., Alieva, E.A., Lotarev, S.V., Lepekhin, N.M., Priseko, Yu.S., and Rasstanaev, A.V., Local Crystallization of Glasses in the La2O3-B2O3-GeO2 System under Laser Irradiation, Glass Phys. Chem., 2009, vol. 35, no. 1, pp. 13–20.

    Article  CAS  Google Scholar 

  22. Minoshima, K., Kowalevicz, A.M., Ippen, E.P., and Fujimoto, J.G., Fabrication of Coupled Mode Photonic Devices in Glass by Nonlinear Femtosecond Laser Materials Processing, Opt. Express, 2002, vol. 10, no. 15, pp. 645–652.

    Article  Google Scholar 

  23. Zhang, H., Eaton, Sh.M., Li, J., Nejadmalayeri, A.H., and Herman, P.R., Type II High-Strength Bragg Grating Waveguides Photowritten with Ultrashort Laser Pulses, Opt. Express, 2007, vol. 15, no. 7, pp. 4182–4191.

    Article  Google Scholar 

  24. Chickov, B.N., Momma, C., Nolte, S., Alvensleben, F.V., and Turnermann, A., Femtosecond, Picosecond and Nanosecond Laser Ablation of Solids, Appl. Phys. A: Mater. Sci. Process., 1996, vol. 63, no. 2, pp. 109–115.

    Article  Google Scholar 

  25. Glezer, E.N., Milosavljevic, M., Huang, L., Finlay, R.J., Her, T.-H., Callan, J.P., and Mazur, E., Three-Dimensional Optical Storage Inside Transparent Materials, Opt. Lett., 1996, vol. 21, no. 24, pp. 2023–2025.

    Article  CAS  Google Scholar 

  26. Qiu, J., Miura, K., and Hirao, K., Three-Dimensional Optical Memory Using Glasses as a Recording Medium through a Multi-Photon Absorption Process, Jpn. J. Appl. Phys., 1998, vol. 37, no. 4B, pp. 2263–2266.

    Article  CAS  Google Scholar 

  27. Qiu, J., Miura, K., Inouye, H., Kondo, Y., Mutsuyu, T., and Hirao, K., Femtosecond Laser-Induced Three-Dimensional Bright and Long-Lasting Phosphorescence Inside Calcium Aluminosilicate Glasses Doped with Rare Earth Ions, Appl. Phys. Lett., 1998, vol. 73, no. 13, pp. 1763–1765.

    Article  CAS  Google Scholar 

  28. Kondo, Y., Suzuki, T., Inouye, H., Miura, K., Mitsuyu, T., and Hirao, K., Three-Dimensional Microscopic Crystallization in Photosensitive Glass by Femtosecond Laser Pulses at Nonresonant Wavelength, Jpn. J. Appl. Phys., 1998, vol. 37, no. 1A/B, pp. L94–L96.

    Article  CAS  Google Scholar 

  29. Will, M., Nolte, S., Chichkov, B.N., and Tunnermann, A., Optical Properties of Waveguides Fabricated in Fused Silica by Femtosecond Laser Pulses, Appl. Opt., 2002, vol. 41, no. 21, pp. 4360–4364.

    Article  Google Scholar 

  30. Fittinghoff, D.N., Schaffer, C.B., Mazur, E., and Squier, J.A., Time-Decorrelated Multifocal Micromachining and Trapping, IEEE J. Sel. Top. Quantum Electron, 2001, vol. 7, no. 4, pp. 559–566.

    Article  CAS  Google Scholar 

  31. Minoshima, K., Kowalevicz, A.M., Hartl, I., Ippen, E.P., and Fujimoto, J.G., Photonic Device Fabrication in Glass by Use of Nonlinear Materials Processing with a Femtosecond Laser Oscillator, Opt. Lett., 2001, vol. 26, no. 19, pp. 1516–1518.

    Article  CAS  Google Scholar 

  32. Sikorski, Y., Said, A.A., Bado, P., Maynard, R., Florea, C., and Winick, K.A., Optical Waveguide Amplifier in Nd-Doped Glass Written with Near-IR Femtosecond Laser Pulses, Electron. Lett., 2000, vol. 36, pp. 226–227.

    Article  Google Scholar 

  33. Miura, K., Inoue, H., Qiu, J., Motsuyu, T., and Hirao, K., Optical Waveguides Induced in Inorganic Glasses by Femtosecond Laser, Nucl. Instrum. Methods Phys. Res., Sect., B 1998, vol. 141, pp. 726–732.

    Article  CAS  Google Scholar 

  34. Muskens, O.L., Del Fatti, N., and Vallée, F., Femto-second Response of a Single Metal Nanoparticle, Nano Lett., 2006, vol. 6, pp. 552–556.

    Article  CAS  Google Scholar 

  35. Veiko, V.P., Kostyuk, G.K., Roskova, G.P., Tsekhomskaya, T.S., Chuiko, V.A., and Yakovlev, E.B., Lazernoe formirovanie opticheskikh elementov (Laser Formation of Optical Elements), Leningrad: Leningrad House of Science and Technology Promotion, 1988 [in Russian].

    Google Scholar 

  36. Antropova, T., Petrov, D., and Yakovlev, E., Porous Glasses as Basic Matrixes of the Micro Optical Devices: Effect of Composition and Leaching Conditions of the Initial Phase-Separated Glass, Phys. Chem. Glasses, 2007, vol. 48, no. 5, pp. 324–327.

    CAS  Google Scholar 

  37. Petrov, D.V., Yakovlev, E.B., and Antropova, T.V., Laser Based Processing of Porous Glass for Micro Optical Devices, in Abstracts of Papers of the International Conference “Fundamentals of Laser Assisted Micro- and Nanotechnologies” (FLAMN-07) and the Workshop “Laser Cleaning and Artworks Conversation” (LCAC), St. Petersburg State University of Information Technologies, Mechanics, and Optics (ITMO), St. Petersburg, Russia, June 25–28, 2007, St. Petersburg: St. Petersburg State University of Information Technologies, Mechanics, and Optics, 2007, p. 44.

    Google Scholar 

  38. Petrov, D.V., Integrated Optics Elements Based on Nanostructured Porous Glasses, in Sbornik tezisov dokladov uchastnikov Mezhdunarodnogo konkursa nauchnykh rabot molodykh uchenykh v oblasti nanotekhnologii “Rusnanotech 08,” Moscow, 2008 (Abstracts of Papers of the International Competition of Scientific Research Works in the Field of Nanotechnologies for Young Researchers “Rusnanotech 08,” Moscow, Russia, December 3–5, 2008), Moscow, 2008, pp. 402–403.

  39. Antropova, T.V., Anfimova, I.N., Veiko, V.P., Kostyuk, G.K., and Yakovlev, E.B., Chemistry and Technology of Nanostructured Matrices (Porous Glasses) for the Elements of Integrated-Optical Communication Systems, in Tezisy dokladov II Mezhdunarodnogo foruma po nanotekhnologiyam “Rusnanotech 2009,” Moscow, 2009 (Abstracts of Papers of the Second International Forum on Nanotechnology “Rusnanotech 2009,” Moscow, Russia, October 6–8, 2009), Moscow, 2009, pp. 507–509.

  40. Mazurin, O.V., Roskova, G.P., Aver’yanov, V.I., and Antropova, T.V., Dvukhfaznye stekla: struktura, svoistva, primenenie (Two-Phase Glasses: Structure, Properties, and Applications), Leningrad: Nauka, 1991 [in Russian].

    Google Scholar 

  41. Antropova, T., Volkova, A., Petrov, D., Stolyar, S., Ermakova, L.E., Sidorova, M.P., Yakovlev, E.B., and Drozdova, I.A., Effect of Structure Parameters and Composition of High-Silica Porous Glasses on Their Thermal and Radiation Resistant Properties, Opt. Appl., 2005, vol. 35, no. 4, pp. 717–723.

    CAS  Google Scholar 

  42. Kreisberg, V.A., Rakcheev, V.P., and Antropova, T.V., Influence of the Acid Concentration in the Process of Leaching on the Morphology of Micropores and Mesopores in Porous Glasses, Glass Phys. Chem., 2006, vol. 32, no. 6, pp. 615–622.

    Article  CAS  Google Scholar 

  43. Evstrapov, A.A., Esikova, N.A., and Antropova, T.V., Investigation of Porous Glasses by Methods of Optical Spectroscopy, Opt. Zh., 2008, vol. 75, no. 4, pp. 71–77.

    Google Scholar 

  44. Antropova, T.V., Anfimova, I.N., and Golovina, G.F., Influence of the Composition and the Temperature of Heat Treatment of Porous Glasses on Their Structure and Light Transmission in the Visible Spectral Region, Glass Phys. Chem., 2009, vol. 35, no. 6, pp. 572–579.

    Article  CAS  Google Scholar 

  45. Petrov, D.V., Dyukareva, A.S., Antropova, T.V., Veiko, V.P., Kostyuk, G.K., and Yakovlev, E.B., Surface Sintering of Porous Glass Plates under Laser Irradiation, Glass Phys. Chem., 2003, vol. 29, no. 5, pp. 456–460.

    Article  CAS  Google Scholar 

  46. Molchanova, O.S., Natrievoborosilikatnye i poristye stekla (Sodium Borosilicate Glasses and Porous Glasses), Moscow: Oboroniz, 1961 [in Russian].

    Google Scholar 

  47. Kreisberg, V.A., Rakcheev, V.P., and Antropova, T.V., Microporous Substructure of Porous Glasses: Dynamic and Equilibrium Approaches, J. Porous Mater., 2005, vol. 12, no. 1, pp. 13–22.

    Article  CAS  Google Scholar 

  48. Antropova, T.V., Morphology of the Porous Glasses: Colloid-Chemical Aspect, Opt. Appl., 2008, vol. 38, no. 1, pp. 5–16.

    CAS  Google Scholar 

  49. Roskova, G.P., Tsekhomskaya, T.S., and Bakhanov, V.A., Light Transmission of Microporous High-Silica Glasses as a Function of the Conditions Used for Their Preparation, Fiz. Khim. Stekla, 1989, vol. 15, no. 6, pp. 874–880.

    CAS  Google Scholar 

  50. OST (Industry Standard) 3-1899-81: Blanks for the Leaching of Glass DV-1, 1981.

  51. Antropova, T.V., Physicochemical Processes for Preparation of Porous Glasses and High-Silica Materials Based on Phase-Separated Alkali Borosilicate Systems, Doctoral (Chem.) Dissertation, St. Petersburg, 2005.

  52. Antropova, T.V. and Drozdova, I.A., Sintering of the Optical Porous Glasses, Opt. Appl., 2003, vol. 33, no. 1, pp. 13–22.

    CAS  Google Scholar 

  53. Elmer, T.H., Sintering of Porous Glass, Am. Ceram. Soc. Bull, 1983, vol. 62, no. 4, pp. 513–516.

    CAS  Google Scholar 

  54. Antropova, T.V., Drozdova, I.A., Vasilevskaya, T.N., Volkova, A.V., Ermakova, L.E., and Sidorova, M.P., Structural Transformations in Thermally Modified Porous Glasses, Glass Phys. Chem., 2007, vol. 33, no. 2, pp. 109–121.

    Article  CAS  Google Scholar 

  55. Bronshtein, I.N. and Semendyaev, K.A., Spravochnik po matematike dlya inzhenerov i uchashchikhsya vtuzov (A Reference Book on Mathematics for Engineers and Students of Higher Technical Schools), Moscow: Nauka, 1981 [in Russian].

    Google Scholar 

  56. Clasen, R. and Rivinius, C., Decoration of Glasses via Laser Sintering of Glass Powder Coatings, in Abstracts of Papers of the Tenth Conference of the European Society of Glass Science and Technology (ESG), Magdeburg, Germany, May 30–June 2, 2010, Magdeburg, 2010, pp. 149–150.

  57. Yakovlev, E.B., Osobennosti povedeniya stekol i steklo-obraznykh materialov pri bystrom nagrevanii (Specific Features in the Behavior of Glasses and Vitreous Materials during Rapid Heating), St. Petersburg: St. Petersburg State University of Information Technologies, Mechanics, and Optics, 2004 [in Russian].

    Google Scholar 

  58. Kreopalova, G.V., Lazareva, N.L., and Puryaev, D.T., Opticheskie izmereniya (Optical Measurements), Moscow: Mashinostroenie, 1987 [in Russian].

    Google Scholar 

  59. Begunov, B.N. and Zakaznov, N.P., Teoriya opticheskikh sistem (The Theory of Optical Systems), Moscow: Mashinostroenie, 1981 [in Russian].

    Google Scholar 

  60. Zaidel’, A.N., Pogreshnosti izmereniya fizicheskikh velichin (Error in the Measurement of Physical Quantities), Leningrad: Nauka, 1985 [in Russian].

    Google Scholar 

  61. Tkachev, A.S., Antropova, T.V., Veiko, V.P., and Drozdova, I.A., Radiation Resistance of Porous Glasses, Glass Phys. Chem., 2004, vol. 30, no. 2, pp. 173–179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Antropova.

Additional information

Original Russian Text © T.V. Antropova, V.P. Veiko, G.K. Kostyuk, M.A. Girsova, I.N. Anfimova, V.A. Chuiko, E. B. Yakovlev, 2012, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antropova, T.V., Veiko, V.P., Kostyuk, G.K. et al. Peculiarities of the formation of planar micro-optic elements on porous glass substrates under the effect of laser radiation followed by sintering. Glass Phys Chem 38, 478–490 (2012). https://doi.org/10.1134/S1087659612060028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659612060028

Keywords

Navigation