Skip to main content
Log in

Optical reflection of oxidized PbSe films in the infrared spectral range

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Nanocrystalline lead selenide films of controlled thickness have been prepared by vacuum deposition on glass substrates of the C-29 brand. Some of the films are oxidized to various degrees in dry oxygen atmosphere. Film surfaces and cleavages have been investigated using scanning electron microscopy. Elemental compositions of subsurface film regions have been determined using X-ray microanalysis. Spectral dependences of film reflection in the wavelength range 2–16 μm have been investigated. The spectra are characterized by the presence of minima due to plasma oscillations of free charge carriers. A relation is established between the type and concentration of charge carriers, on the one hand, and the shape and position of the region of the anomalous dispersion of the reflectivity, on the other hand. Characteristic vibrations of the selenite ion SeO 2−3 , being assigned to fully symmetric and antisymmetric stretching vibrations, are found in the long-wavelength part of reflection spectra for all oxidized films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butkevich, V.G., Bochkov, V.D., and Globus, E.R., Photodetectors and Photoreceiving Devices Based on Polycrystalline and Epitaxial Layers of Lead Chalcogenides, Prikl. Fiz., 2001, no. 6, pp. 66–112.

  2. Bube, R.H., Photoconductivity of Solids, New York: Wiley, 1960. Translated under the title Fotoprovodimost’ tverdykh tel, Moscow: Inostrannaya Literatura, 1962.

    Google Scholar 

  3. Popov, V.P., Tikhonov, P.A., and Tomaev, V.V., Investigation into the Mechanism of Oxidation on the Surface of Lead Selenide Semiconductor Structures, Glass Phys. Chem., 2003, vol. 29, no. 5, pp. 494–500.

    Article  CAS  Google Scholar 

  4. Tomaev, V.V., Makarov, L.L., Tikhonov, P.A., and Solomennikov, A.A., Oxidation Kinetics of Lead Selenide, Glass Phys. Chem., 2004, vol. 30, no. 4, pp. 349–355.

    Article  CAS  Google Scholar 

  5. Tomaev, V.V., Miroshkin, V.P., and Gar’kin, L.N., Influence of the Preparation Technique on the Resistance of the PbSe + PbSeO3 Two-Phase Composite, Glass Phys. Chem., 2006, vol. 32, no. 5, pp. 579–582.

    Article  CAS  Google Scholar 

  6. Tomaev, V.V., Miroshkin, V.P., and Gar’kin, L.N., Investigation into the Electrical Properties of the PbSe + PbSeO3 Two-Phase Composite by Impedance Spectroscopy, Glass Phys. Chem., 2006, vol. 32, no. 5, pp. 583–586.

    Article  CAS  Google Scholar 

  7. Tomaev, V.V., Makarov, L.L., Tikhonov, P.A., Popov, V.P., and Rozhdestvenskaya, I.V., Formation of Lead Selenide Crystallites in a Dielectric Matrix of Lead Selenite, Glass Phys. Chem., 2005, vol. 31, no. 4, pp. 489–498.

    Article  CAS  Google Scholar 

  8. Tomaev, V.V. and Panov, M.F., Ellipsometric Control of the Parameters of Lead Selenide Films during Oxidation, Glass Phys. Chem., 2006, vol. 32, no. 3, pp. 370–373.

    Article  CAS  Google Scholar 

  9. Tomaev, V.V., Chernyshova, I.V., and Tikhonov, P.A., Investigation of the Products of Oxidation of Lead Selenide by IR Spectroscopy, Glass Phys. Chem., 2007, vol. 33, no. 6, pp. 646–651.

    Article  CAS  Google Scholar 

  10. Tomaev, V.V., Ferroelectric Phase Transition in the PbSe + PbSeO3 Composite, Glass Phys. Chem., 2009, vol. 35, no. 6, pp. 660–667.

    Article  CAS  Google Scholar 

  11. Bestaev, M.V., Makhin, A.V., Moshnikov, V.A., and Tomaev, V.V., A Technique for Preparation of the Charge Used for Synthesizing Lead and Tin Chalcogenide Solid Solutions by Vapor-Phase Methods, RF Patent No. 2155830 (July 9, 1997).

  12. Solid State Surface Science, Green, M., Ed., New York: Marcel Dekker, 1969. Translated under the title Poverkhnostnye svoistva tverdykh tel, Moscow: Mir, 1972.

    Google Scholar 

  13. Moss, T.S., Burrell, G.J., and Ellis, B., Semiconductor Opto-Electronics, London: Butterworth, 1973. Translated under the title Poluprovodnikovaya optoelektronika, Moscow: Mir, 1976.

    Google Scholar 

  14. Subashiev, V.K., Dubrovskii, G.V., and Kukharskii, A.A., Determination of the Optical Constants and the Concentration of Charge Carriers in Heavily Doped Semiconductor Materials from the Reflection Coefficient, Sov. Phys. Solid State, 1964, vol. 6, no. 4, pp. 830–832.

    Google Scholar 

  15. Kukharskii, A.A. and Subashiev, V.K., Determination of Some Parameters of Heavily Doped Semiconductors from the Spectral Variation of the Reflection Coefficient, Sov. Phys. Solid State, 1966, vol. 8, no. 3, pp. 603–606.

    Google Scholar 

  16. Kukharskii, A.A. and Subashiev, V.K., On the Determination of the Effective Mass and Relaxation Time of Charge Carriers in Semiconductors from the Infrared Light Reflection Spectra, Sov. Phys. Semicond., 1970, vol. 4, no. 2, pp. 234–239.

    Google Scholar 

  17. Kukharskii, A.A., The Influence of Damping on the Plasmon-Phonon Spectra of Solids, Sov. Phys. Solid State, 1966, vol. 14, no. 6, pp. 1501–1506.

    Google Scholar 

  18. Voronkova, E.M., Grechushnikov, B.N., Distler, G.I., and Petrov, I.P., Opticheskie materialy dlya infrakrasnoi tekhniki. Spravochnoe izdanie (Optical Materials for Infrared Engineering: A Handbook), Moscow: Nauka, 1965 [in Russian].

    Google Scholar 

  19. Bankina, V.F., Poretskaya, L.V., Skudnova, E.V., and Shelimova, L.E., Poluprovodnikovye soedineniya, ikh poluchenie i svoistva (Semiconductor Compounds, Their Preparation, and Properties), Moscow: Nauka, 1967 [in Russian].

    Google Scholar 

  20. Popovkin, B.A., Cheremisinov, V.P., and Simanov, Yu.P., Investigation of the Crystal Structure and Vibrational Spectrum of Lead Selenite, Zh. Strukt. Khim., 1963, vol. 4, no. 1, pp. 43–49.

    CAS  Google Scholar 

  21. Ravich, Yu.I., Efimova, B.A., and Smirnov, I.A., Metody issledovaniya poluprovodnikov v primenenii k khal’kogenidam svintsa PbTe, PbSe i PbS (Methods for Investigating Semiconductors as Applied to Lead Chalcogenides PbTe, PbSe, and PbS), Moscow: Nauka, 1968 [in Russian].

    Google Scholar 

  22. Nesmelova, I.M., Opticheskie svoistva uzkoshchelevykh poluprovodnikov (Optical Properties of Narrow-Band-Gap Semiconductors), Novosibirsk: Nauka, 1982 [in Russian].

    Google Scholar 

  23. Ukhanov, Yu.I., Opticheskie svoistva poluprovodnikov (Optical Properties of Semiconductors), Moscow: Nauka, 1977 [in Russian].

    Google Scholar 

  24. Marenich, A.V. and Solomonik, V.G., The Structure and Vibrational Spectra of XO2 Molecules and XO 2−3 Ions (X = S, Se, and Te), Russ. J. Phys. Chem. A, 1999, vol. 73, no. 12, pp. 1993–1997.

    Google Scholar 

  25. Fowless, A.D. and Stranks, D.R., Selenitometal Complexes: 1. Synthesis and Characterization of Selenito Complexes of Cobalt(III) and Their Equilibrium Properties in Solution, Inorg. Chem., 1977, vol. 16, no. 16, pp. 1271–1276.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Panov.

Additional information

Original Russian Text © M.F. Panov, V.V. Tomaev, 2012, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panov, M.F., Tomaev, V.V. Optical reflection of oxidized PbSe films in the infrared spectral range. Glass Phys Chem 38, 419–426 (2012). https://doi.org/10.1134/S1087659612040104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659612040104

Keywords

Navigation