Skip to main content
Log in

Synthesis of nanocomposite materials in the SnO2-NiO system

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The SnO2-NiO nanocomposites with the specific surface area on the order of 100 m2/g and the particle size of both phases of less than 10 nm have been synthesized by the sol-gel method with the subsequent annealing in the temperature interval 200–1000°C. It has been shown that, with an increase in the annealing temperature to 900°C, the specific surface area of the nanocomposites increases. This effect has been explained by the increase in the porosity due to the destruction of the aggregates of primary amorphous particles. The electrical conductivity has been measured and the parameters of the surface defects have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Filippov, E.A., Palkov, A.S., and Kokorin, I.I., Sol-Gel Process, Radiokhimiya, 1980, vol. 22, no. 3, pp. 305–315.

    CAS  Google Scholar 

  2. Lv, P., Tang, Z.A., Yu, J., Zhang, F.T., Wei, G.F., Huang, Z.X., and Hu., Y., Study on a Micro-Gas Sensor with SnO2-NiO Sensitive Film for Indoor Formaldehyde Detection, Sens. Actuators, B, 2008, vol. 132, pp. 74–80.

    Article  Google Scholar 

  3. Yang, H., Tao, Q., Zhang, X., Tang, A., and Ouyang, J., Solid-State Synthesis and Electrochemical Property of SnO2-NiO Nanomaterials, J. Alloys Compd., 2008, vol. 459, nos. 1–2, pp. 98–102.

    Article  CAS  Google Scholar 

  4. Rumyantseva, M.N., Kovalenko, V.V., Gas’kov, A.M., and Pan’e, T., Nanocomposites Based on Metal Oxides As Materials for Gas Sensors Ross. Khim. Zh., 2007, vol. 51, no. 6, pp. 61–70.

    CAS  Google Scholar 

  5. Martucci, A., Buso, D., De Monte, M., Guglielmi, M., Cantalini, C., and Sada, C., Nanostructured Sol-Gel Silica Thin Films Doped with NiO and SnO2 for Gas Sensing Applications, J. Mater. Chem., 2004, vol. 14, no. 19, pp. 2889–2895.

    Article  CAS  Google Scholar 

  6. Badalyan, S.M., Rumyantseva, M.N., Nikolaev, S.A., Marikutsa, A.V., Smirnov, V.V., Alikhanian, A.S., and Gaskov, A.M., Effect of Au and NiO Catalysts on the NO2 Sensing Properties of Nanocrystalline SnO2, Inorg. Mater., 2010, vol. 46, no. 3, pp. 232–236.

    Article  CAS  Google Scholar 

  7. Yang, G., Haibo, Z., and Biying, Z., Monolayer Dispersion of Oxide Additives on SnO2 and Their Promoting Effects on Thermal Stability of SnO2 Ultrafine Particles, J. Mater. Sci., 2000, vol. 35, no 4, pp. 917–923.

    Article  CAS  Google Scholar 

  8. Jain, K., Pant, R.P., and Lakshmikumar, S.T., Effect of Ni Doping on Thick Film SnO2 Gas Sensor, Sens. Actuators, B, 2006, vol. 113, no. 2, pp. 823–829.

    Article  Google Scholar 

  9. Hidalgo, P., Castro, R.H.R., Coelho, A.C.V., and Gouvêa, D., Surface Segregation and Consequent SO2 Sensor Response in SnO2-NiO,Chem. Mater., 2005, vol. 17, no. 16, pp. 4149–4153.

    Article  CAS  Google Scholar 

  10. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity, London: Academic, 1982. Translated under the title Adsorbtsiya, udel’naya poverkhnost’, poristost’, Moscow: Mir, 1984.

    Google Scholar 

  11. Rumyantseva, M.N., Makeeva, E.A., and Gas’kov, A.M., Influence of Microstructure of Semiconductor Sensor Materials on Chemisorption of Oxygen on Their Surfaces, Ross. Khim. Zh., 2008, vol. 52, no. 2, pp. 122–129.

    CAS  Google Scholar 

  12. Gromov, V.F., Gerasimov, G.N., Belysheva, T.V., and Trakhtenberg, L.I., Mechanisms of Sensory Effect in Conductometric Tin Dioxide Based Sensors for Detecting Gas-Reducing Agents Ross. Khim. Zh., 2008, vol. 52, no. 5, pp. 80–87.

    CAS  Google Scholar 

  13. Ryabtsev, S.V., Yukish, A.V., Khango, S.I., Yurakov, Yu.A., Shaposhnik, A.V., and Domashevskaya, E.P., Kinetics of Resistive Response of SnO2 − x Thin Films in Gas Environment, Semiconductors, 2008, vol. 42, no. 4, pp. 481–485.

    Article  CAS  Google Scholar 

  14. Castro, R.H.R., Hidalgo, P., Muccillo R., Gouvêa, D., Microstructure and structure of NiO-SnO2 and Fe2O3-SnO2 Systems, Appl. Surf. Sci., 2003, vol. 214, nos. 1–4, pp. 172–177.

    Article  CAS  Google Scholar 

  15. Nuli, Y.-N., Zhao, S.-L., and Qin, Q.-Z., Nanocrystalline Tin Oxides and Nickel Oxide Film Anodes For Li-Ion Batteries, J. Power Sources, 2003, vol. 114, no. 1, pp. 113–120.

    Article  CAS  Google Scholar 

  16. Lee, S.-H., Tracy, C.E., and Pitts, J.R., Effect of Nonstoichiometry of Nickel Oxides on Their Supercapacitor Behavior, Electrochem. Solid-State Lett., 2004, vol. 7, no. 10, pp. A299–A301.

    Article  CAS  Google Scholar 

  17. Hassan, M.F., Zaiping, R.M.M., Guo., Chen., Z., and Liu., H., SnO2-NiO-C Nanocomposite As a High Capacity Anode Material for Lithium-Ion Batteries, J. Mater. Chem., 2010, vol. 20, no. 43, pp. 9707–9712.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Aparnev.

Additional information

Original Russian Text © A.I. Aparnev, A.A. Golubchuk, I.S. Chukanov, N.F. Uvarov, 2011, published in Fizika i Khimiya Stekla.

Published from the Proceedings of the First All-Russian Conference “Sol-Gel Synthesis and Study of Inorganic Compounds, Hybrid Functional Materials, and Disperse Systems,” St. Petersburg, Russia, November 22–24, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aparnev, A.I., Golubchuk, A.A., Chukanov, I.S. et al. Synthesis of nanocomposite materials in the SnO2-NiO system. Glass Phys Chem 38, 131–136 (2012). https://doi.org/10.1134/S1087659611060046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659611060046

Keywords

Navigation