Glass Physics and Chemistry

, Volume 36, Issue 5, pp 589–597 | Cite as

Computer investigation of the structure of a porous SiO2 nanoparticle under uniform tension

  • A. E. Galashev


The behavior of a (SiO2)325 nanoparticle constructed by icosahedral packing of identical blocks and subjected to uniform tension has been investigated using the molecular dynamics method. In the nanoparticle, the middle layers are characterized by the largest oscillations of the internal pressure and potential energy. As the strain increases, the number of neighboring silicon ions decreases and reaches a constant value of four at the strain Δl/l = 0.10. With an increase in the strain, the surface tension of the nanoparticle decreases and passes through a minimum at Δl/l = 0.16.

Key words

tensile deformation silicon dioxide molecular dynamics nanoparticle structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hong, J.-K., Yang, H.S., Jo, M.-K., Park, H.-K., and Choi, S.-Y., Preparation and Characterization of Porous Silica Xerogel Film for Low Dielectric Application, Thin Solid Films, 1997, vols. 308–309, pp. 495–500.CrossRefGoogle Scholar
  2. 2.
    Letant, S.E., Content, S., Tan, T.T., Zenhausern, F., and Sailor, M.J., Integration of Porous Silicon Chips in an Electronic Artificial Nose, Sens. Actuators, Ser. B, 2000, vol. 69, nos. 1–2, pp. 193–198.CrossRefGoogle Scholar
  3. 3.
    Ohring, M., The Materials Science of Thin Films, Boston: Academic, 1992.Google Scholar
  4. 4.
    Ruan, L. and Chen, D.M., Pinhole Formation in Solid Phase Epitaxial Film of CoSi2 on Si(111), Appl. Phys. Lett., 1998, vol. 72, no. 26, pp. 3464–3466.CrossRefADSGoogle Scholar
  5. 5.
    Qian, W., Rohrer, G.S., Skowronski, M., Doverspike, K., Rowland, L.B., and Gaskell, D.K., Open-Core Screw Dislocations in GaN Epilayers Observed by Scanning Force Microscopy and High-Resolution Transmission Electron Microscopy, Appl. Phys. Lett., 1995, vol. 67, no. 16, pp. 2284–2286.CrossRefADSGoogle Scholar
  6. 6.
    Scholz, R., Gosele, U., Niemann, E., and Wischmeyer, F., Micropipes and Voids at β“SiC/Si(100) Interfaces: An Electron Microscopy Study, Appl. Phys. A, 1997, vol. 64, no. 2, pp. 115–125.CrossRefADSGoogle Scholar
  7. 7.
    Fishman, G., Mihalcescu, I., and Romestain, R., Effective-Mass Approximation and Statistical Description of Luminescence Line Shape in Porous Silicon, Phys. Rev. B: Condens. Matter, 1993, vol. 48, no. 3, pp. 1464–1467.ADSGoogle Scholar
  8. 8.
    Perez, J.M., Villalobos, J., McNeill, P., Prasad, J., Cheek, R., Kelber, J., Estrera, J.P., Stevens, P.D., and Glosser, R., Direct Evidence for the Amorphous Silicon Phase in Visible Photoluminescent Porous Silicon, Appl. Phys. Lett., 1992, vol. 61, pp. 563–565.CrossRefADSGoogle Scholar
  9. 9.
    Schupper, S., Friedman, S.L., Marcus, M.A., Adler, D.L., Xie, Y.K., Ross, F.M., Harris, T.D., Brown, W.L., Chabal, Y.J., Brus, L.E., and Citrin, P.H., Dimensions of Luminescent Oxidized and Porous Silicon Structures, Phys. Rev. Lett., 1994, vol. 72, no. 16, pp. 2648–2651.CrossRefADSGoogle Scholar
  10. 10.
    Cullis, A.G. and Canham, L.T., Visible Light Emission Due to Quantum Size Effects in Highly Porous Crystalline Silicon, Nature (London), 1991, vol. 353, pp. 335–338.CrossRefADSGoogle Scholar
  11. 11.
    Schweigert, V., Lehtinen, K.E.J., Carrier, M.J., and Zachariah, M.R., Structure and Properties of Silica Nanoclusters at High Temperatures, Phys. Rev. B: Condens. Matter, 2002, vol. 65, nos. 1–9, P. 235410 (9 pages).ADSGoogle Scholar
  12. 12.
    Zhong, A., Rong, C., and Liu, S., Structural and Dynamic Properties of (SiO2)6 Silica Nanostructures: A Quantum Molecular Dynamics Study, J. Phys. Chem. A, 2007, vol. 111, no. 16, pp. 3132–3136.CrossRefPubMedGoogle Scholar
  13. 13.
    Van Beest, B.W.H, Kramer, G.J., and van Santen, R.A., Force Fields for Silicas and Aluminophosphates Based on Ab Initio Calculations, Phys. Rev. Lett., 1990, vol. 64, no, 16, pp. 1955–1958.CrossRefADSPubMedGoogle Scholar
  14. 14.
    Saika-Voivod, I., Sciortino, F., and Poole, P.H., Free Energy and Configurational Entropy of Liquid Silica: Fragile-to-Strong Crossover and Polyamorphism, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2004, vol. 69, P. 041 503 (13 pages).Google Scholar
  15. 15.
    Novruzova, O.A., Chukanov, V.K, and Galashev, A.E., Computer-Aided Study of Oxygen Absorption by Water Clusters: IR Spectra of Heteroclusters, Kolloidn. Zh., 2006, vol. 68, no. 4, pp. 505–512 [Colloid J. (Engl. transl.), 2006, vol. 68, no. 4, pp. 462–469].Google Scholar
  16. 16.
    Lemberg, H.L. and Stillinger, F.H., Central Force Model for Water, J. Chem. Phys., 1975, vol. 62, no. 5, pp. 1677–1690.CrossRefADSGoogle Scholar
  17. 17.
    Rahman, A., Stillinger, F.K., and Lemberg, H.L., Study of the Central Force Model for Liquid Water by Molecular Dynamics, J. Chem. Phys., 1975, vol. 63, no. 12, pp. 5223–5230.CrossRefADSGoogle Scholar
  18. 18.
    Saint-Martin, H., Hess, B., and Berendsen, H.J.C., An Application of Flexible Constraints in Monte Carlo Simulations of the Isobaric-Isothermal Ensemble of Liquid Water and Ice Ih with the Polarizable and Flexible Mobile Charge Densities in Harmonic Oscillators Model, J. Chem. Phys., 2004, vol. 120, no. 23, pp. 11133–11143.CrossRefADSPubMedGoogle Scholar
  19. 19.
    Verlet, L., Computer “Experiments” on Classical Fluids: 1. Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev., 1967, vol. 159, pp. 98–103.CrossRefADSGoogle Scholar
  20. 20.
    Galashev, A.E., Izmodenov, I.A., Rakhmanova, O.R., and Novruzova, O.A., Computer Study of Physicochemical Properties of Stressed Noncrystalline Silicon Nanoparticles, Poverkhnost, 2007, no. 8, pp. 95–103.Google Scholar
  21. 21.
    Finney, J.L., A Procedure for the Construction of Voronoi Polyhedra, J. Comput. Phys., 1979, vol. 32, pp. 137–143.CrossRefADSGoogle Scholar
  22. 22.
    Galashev, A.E., Polukhin, V.A., Izmodenov, I.A., and Galasheva, O.A., Computer Study of the Structure of Vitreous and Amorphous Silicon Nanoparticles, Poverkhnost, 2006, no. 1, pp. 41–49.Google Scholar
  23. 23.
    Yang, A.J.M., Fleming, P.D., and Gibbs, J.H., Molecular Theory of Surface Tension, J. Chem. Phys., 1976, vol. 64, pp. 3732–3747.CrossRefADSGoogle Scholar
  24. 24.
    Ono, S. and Kondo, S., Molecular Theory of Surface Tension in Liquids, Berlin: Springer, 1960. Translated under the title Molekulyarnaya teoriya poverkhnostnogo natyazheniya v zhidkostyakh, Moscow: Inostrannaya Literatura, 1963.Google Scholar
  25. 25.
    Vessal, B., Simulation Studies of Silicates and Phosphates, J. Non-Cryst. Solids, 1994, vol. 177, pp. 103–124.CrossRefADSGoogle Scholar
  26. 26.
    Tablitsy fizicheskikh velichin (Tables of Physical Quantities), Kikoin, I.K., Ed., Moscow: Atomizdat, 1976 [in Russian].Google Scholar
  27. 27.
    Trave, A., Tangney, P., Scandolo, S., Pasquarello, A., and Car, R., Pressure-Induced Structural Changes in Liquid SiO2 from Ab Initio Simulations, Phys. Rev. Lett., 2002, vol. 89, nos. 1–4, P. 245504 (4 pages).CrossRefADSPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Industrial EcologyUral Branch of the Russian Academy of SciencesYekarerinburgRussia

Personalised recommendations