Advertisement

Glass Physics and Chemistry

, Volume 36, Issue 5, pp 570–574 | Cite as

Self-diffusion in solid lithium

  • E. Dologlou
Article

Abstract

Here, we suggest a method to reproduce the self-diffusion coefficient of Li at various temperatures up to the melting point by starting from a single measurement. This procedure may be applicable to various categories of solids. It is based on a thermodynamical model that interrelates point defect parameters with the bulk properties that has been recently used (Dologlou, E., Glass Phys. Chem., 2009, vol. 35, no. 3, pp. 295–297) to explain the Meyer-Neldel rule for the ac conductivity of glassy alloys.

Key words

diffusion defect properties elastic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hanfland, M., Syassen, K., Christensen, N.E., and Novikov, D.L., New High-Pressure Phases of Lithium, Nature (London), 2000, vol. 408, pp. 174–178.CrossRefADSPubMedGoogle Scholar
  2. 2.
    Shimizu, K., Ishikawa K, Takao D., Yagi T., and Ataua K., Superconductivity: Putting the Squeeze on Lithium, Nature (London), 2002, vol. 419, pp. 597–599.CrossRefADSPubMedGoogle Scholar
  3. 3.
    Neaton, J.B. and Ashcroft, N.B., Pairing in Dense Lithium, Nature (London), 1999, vol. 400, pp. 141–144.CrossRefADSGoogle Scholar
  4. 4.
    Longair, M., Obituary: Vitaly Ginzburg (1916–2009), Nature (London), 2009, vol. 462, p. 996.CrossRefADSPubMedGoogle Scholar
  5. 5.
    Dologlou, E., Comments on the Validity of Meyer-Neldel Rule for AC Conduction in Glassy Alloys, Glass Phys. Chem., 2009, vol. 35, no. 3, pp. 295–297.CrossRefGoogle Scholar
  6. 6.
    Magomedov, M.N., Thermal Expansion of Crystals of Lithium Isotopes, High Temp., 2009, vol. 47, pp. 219–222.CrossRefGoogle Scholar
  7. 7.
    Kostopoulos, D., Varotsos, P., and Mourikis, S., The Conductivity of Crystalline Nal, Can. J. Phys., 1975, vol. 53, pp. 1318–1320.ADSGoogle Scholar
  8. 8.
    Varotsos, P. and Miliotis, D., New Aspects on the Dielectric Properties of the Alkali Halides with Divalent Impurities, J. Phys. Chem. Solids, 1974, vol. 35, pp. 927–930.CrossRefADSGoogle Scholar
  9. 9.
    Varotsos, P. and Alexopoulos, K., Prediction of the Compressibility of Mixed Alkali Halides, J. Phys. Chem. Solids, 1980, vol. 41, pp. 1291–1294.CrossRefADSGoogle Scholar
  10. 10.
    Varotsos, P., On the Temperature Variation of the Bulk Modulus of Mixed Alkali Halides, Phys. Status Solidi B, 1980, vol. 99, pp. K93–K96.CrossRefADSGoogle Scholar
  11. 11.
    Varotsos, P. and Alexopoulos, K., Physical Properties of the Variations of the Electric Field of the Earth Preceding Earthquakes: I, Tectonophysics, 1984, vol. 110, pp. 73–98.CrossRefADSGoogle Scholar
  12. 12.
    Varotsos, P. and Alexopoulos, K., Physical Properties of the Variations of the Electric Field of the Earth Preceding Earthquakes: II. Determination of Epicenter and Magnitude, Tectonophysics, 1984, vol. 110, pp. 99–125.CrossRefADSGoogle Scholar
  13. 13.
    Varotsos, P. and Lazaridou, M., Latest Aspects of Earthquake Prediction in Greece Based on Seismic Electric Signals: I, Tectonophysics, 1991, vol. 188, pp. 321–347.CrossRefADSGoogle Scholar
  14. 14.
    Varotsos, P., Alexopoulos, K., Lazaridou, M., and Nagao, T., Earthquake Predictions Issued in Greece by Seismic Electric Signals Since February 6, 1990, Tectonophysics, 1993, vol. 224, pp. 269–288.CrossRefADSGoogle Scholar
  15. 15.
    Varotsos, P.A., Sarlis, N.V., and Skordas, E.S., Long-Range Correlations in the Electric Signals That Precede Rupture, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2002, vol. 66, article 011 902 (7 pages).Google Scholar
  16. 16.
    Varotsos, P., Eftaxias, K., Lazaridou, M., Antonopoulos, G., Makris, J., and Poliyiannakis, J., Summary of the Five Principles Suggested by P. Varotsos et al. (1996) and the Additional Questions Raised in This Debate, Geophys. Res. Lett., 1996, vol. 23, pp. 1449–1452.CrossRefADSGoogle Scholar
  17. 17.
    Varotsos, P.A., Sarlis, N.V., and Skordas, E.S., Long-Range Correlations in the Electric Signals That Precede Rupture: Further Investigations, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2003, vol. 67, article 021109 (13 pages).Google Scholar
  18. 18.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S., and Lazaridou, M., Natural Entropy Fluctuations Discriminate Similar Looking Electric Signals Emitted from Systems of Different Dynamics, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2005, vol. 71, article 011110 (11 pages).Google Scholar
  19. 19.
    Varotsos, P., Eftaxias, K., Vallianatos, F., and Lazaridou, M., Basic Principles for Evaluating An Earthquake Prediction Method, Geophys. Res. Lett., 1966, vol. 23, pp. 1295–1298.CrossRefADSGoogle Scholar
  20. 20.
    Varotsos, P., Sarlis, N., Skordas E., Tanaka H., and Lazaridou, M., Entropy of Seismic Electric Signals: Analysis in Natural Time under Time Reversal, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2006, vol. 73, article 031114 (8 pages).Google Scholar
  21. 21.
    Varotsos, P., Sarlis, N., Skordas, E., Tanaka H., and Lazaridou, M., Attempt to Distinguish Long-Range Temporal Correlations from the Statistics of the Increments by Natural Time: Analysis, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2006, vol. 74, article 021123 (12 pages).Google Scholar
  22. 22.
    Varotsos, P. and Alexopoulos, K., Current Methods of Lattice Defect Analysis Using Dilatometry and Self-Diffusion: Critical Review and Proposals, Phys. Status Solidi B, 1982, vol. 110, pp. 9–31.CrossRefADSGoogle Scholar
  23. 23.
    Varotsos, P., Comparison of Models That Interconnect Point Defect Parameters in Solids with Bulk Properties, J. Appl. Phys., 2007, vol. 101, article 123503 (8 pages).Google Scholar
  24. 24.
    Varotsos, P., Comments on the Formation Entropy of a Frenkel Defect in BaF2 and CaF2, Phys. Rev. B: Solid State, 1976, vol. 13, p. 938.ADSGoogle Scholar
  25. 25.
    Varotsos, P. and Alexopoulos, K., Calculation of Diffusion Coefficients at Any Temperature and Pressure from a Single Measurement: I. Self-Diffusion, Phys. Rev. B: Condens. Matter., 1980, vol. 22, pp. 3130–3134.ADSGoogle Scholar
  26. 26.
    Varotsos, P.A., Temperature and Pressure Dependence of Defect Formation Volume in Ionic Crystals, J. Phys. (Paris), 1977, vol. 38, pp. L455–L458.Google Scholar
  27. 27.
    Varotsos, P. and Alexopoulos, K., Estimation of the Migration Enthalpy and Entropy for Cation Vacancy Motion in Alkali Halides with the NaCl-Type Structure, Phys. Rev. B: Solid State, 1977, vol. 15, pp. 2348–2351.ADSGoogle Scholar
  28. 28.
    Varotsos, P., Ludwig, W., and Alexopoulos, K., Calculation of the Formation Volume of Vacancies in Solids, Phys. Rev. B: Condens. Matter, 1978, vol. 18, pp. 2683–2691.ADSGoogle Scholar
  29. 29.
    Varotsos, P. and Alexopoulos, K., Calculation of the Migration Volume of Vacancies in Ionic Solids from Macroscopic Parameters, Phys. Status Solidi A, 1978, vol. 47, pp. K133–K136.CrossRefADSGoogle Scholar
  30. 30.
    Varotsos, P. and Alexopoulos, K., The Curvature in Conductivity Plots of Silver Halides as a Consequence of Anharmonicity, J. Phys. Chem. Solids, 1978, vol. 39, pp. 759–761.CrossRefADSGoogle Scholar
  31. 31.
    Varotsos, P. and Alexopoulos, K., Connection between the Formation Volume and Formation Gibbs Energy in Noble-Gas Solids, Phys. Rev. B: Condens. Matter, 1984, vol. 30, pp. 7305–7306.ADSGoogle Scholar
  32. 32.
    Varotsos, P. and Alexopoulos, K., On the Possibility of the Enthalpy of a Schottky Defect Decreasing with Increasing Temperature, J. Phys. C: Solid State, 1979, vol. 12, pp. L761–L764.CrossRefADSGoogle Scholar
  33. 33.
    Varotsos, P., Defect Volumes and the Equation of State in α-PbF2, Phys. Rev. B: Condens. Matter, 2007, vol. 76, article 092 106 (4 pages).Google Scholar
  34. 34.
    Hanfland, M., Loa, I., Syassen, K., Schwarz, U., and Takemura, K., Equation of State of Lithium to 21 GPa, Solid State Commun., 1999, vol. 112, pp. 123–127.CrossRefADSGoogle Scholar
  35. 35.
    Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1992.Google Scholar
  36. 36.
    Anderson, M.S. and Swenson, C.A., Experimental Equation of State for Cesium and Lithium Metals to 20 kbar and the High-Pressure Behavior of the Alkali Metals, Phys. Rev. B: Condens. Matter, 1985, vol. 31, pp. 668–680.ADSGoogle Scholar
  37. 37.
    Messer, P. and Noack, N., Nuclear Magnetic Relaxation by Self-Diffusion in Solid Lithium: T1-Frequency Dependence, Appl. Phys. A, 1975, vol. 6, pp. 79–88.ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of AthensAthensGreece

Personalised recommendations