Advertisement

Glass Physics and Chemistry

, Volume 35, Issue 3, pp 295–297 | Cite as

Comments on the validity of Meyer-Neldel rule for AC conduction in glassy alloys

Article

Abstract

In a recent publication (Glass Phys. Chem., 2008, vol. 34, no. 1, pp. 42–46) the Meyer-Neldel rule was found to hold in the case of ac conductivity of glassy Se100 − x Te x (x = 10, 20, 30) alloys and a tentative explanation was forwarded. Here, we suggest an alternative explanation of this rule on the basis of a thermodynamical model that interrelates point defect parameters with bulk properties.

Keywords

Fullerene Bulk Modulus Glass Physic Chalcogenide Glass Alkali Halide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mehta, N., Kumar, D., and Kumar, A., Investigation of the Meyer-Neldel Rule for AC Conduction in Glassy Se100 − xTex Alloys, Glass Phys. Chem., 2008, vol. 34, pp. 42–46.Google Scholar
  2. 2.
    Meyer, W. and Neldel, H., Z. Tech. Phys., 1937, vol. 12, p. 588.Google Scholar
  3. 3.
    Kostopoulos, D., Varotsos, P., and Mourikis, S., The Conductivity of Crystalline NaI, Can. J. Phys., 1975, vol. 53, pp. 1318–1320.ADSGoogle Scholar
  4. 4.
    Varotsos, P., Comments on the Formation Entropy of a Frenkel Defect in BaF2 and CaF2, Phys. Rev. B: Solid State, 1976, vol. 15, p. 938.ADSGoogle Scholar
  5. 5.
    Varotsos, P. and Alexopoulos, K., Estimation of the Migration Enthalpy and Entropy for Cation Vacancy Motion in Alkali Halides with the NaCl-Type Structure, Phys. Rev. B: Solid State, 1977, vol. 15, pp. 2348–2351.ADSGoogle Scholar
  6. 6.
    Varotsos, P.A. and Alexopoulos, K., The Curvature in Conductivity Plots of Silver Halides as a Consequence of Anharmonicity, J. Phys. Chem. Solids, 1978, vol. 39, pp. 759–761.CrossRefADSGoogle Scholar
  7. 7.
    Varotsos, P. and Alexopoulos, K., On the Possibility of the Enthalpy of a Schottky Defect Decreasing with Increasing Temperature, J. Phys. C: Solid State, 1979, vol. 12, pp. L761–L764.CrossRefADSGoogle Scholar
  8. 8.
    Varotsos, P. and Alexopoulos, K., Negative Activation Volumes of Defects in Solids, Phys. Rev. B: Condens. Matter, 1980, vol. 21, pp. 4898–4899.ADSGoogle Scholar
  9. 9.
    Varotsos, P. and Alexopoulos, K., Calculation of Diffusion Coefficients at Any Temperature and Pressure from a Single Measurement: I. Self-Diffusion, Phys. Rev. B: Condens. Matter, 1980, vol. 22, pp. 3130–3134.ADSGoogle Scholar
  10. 10.
    Varotsos, P. and Alexopoulos, K., Decisive Importance of the Bulk Modulus and the Anharmonicity in the Calculation of Migration and Formation Volumes, Phys. Rev. B: Condens. Matter, 1981, vol. 24, pp. 904–910.ADSGoogle Scholar
  11. 11.
    Varotsos, P. and Alexopoulos, K., Migration Entropy for the Bound Fluorine Motion in Alkaline-Earth Fluorides, J. Phys. Chem. Solids, 1980, vol. 41, pp. 443–446.CrossRefADSGoogle Scholar
  12. 12.
    Varotsos, P. and Alexopoulos, K., Migration Parameters for the Bound Fluorine Motion in Alkaline Earth Fluorides: II, J. Phys. Chem. Solids, 1981, vol. 42, pp. 409–410.CrossRefADSGoogle Scholar
  13. 13.
    Varotsos, P., Alexopoulos, K., and Nomicos, K., Comments on the Pressure Variation of the Gibbs Energy for Bound and Unbound Defects, Phys. Status Solidi B, 1982, vol. 111, pp. 581–590.CrossRefGoogle Scholar
  14. 14.
    Lazaridou, M., Varotsos, C., Alexopoulos, K., and Varotsos, P., Point Defect Parameters of LiF, J. Phys. C: Solid State Phys., 1985, vol. 18, pp. 3891–3895.CrossRefADSGoogle Scholar
  15. 15.
    Spear, W.E., Allan, D., Lecomber, P., and Gaith, A., A New Approach to the Interpretation of the Transport Results in a-Si, Philos. Mag. B, 1980, vol. 41, pp. 419–438.CrossRefGoogle Scholar
  16. 16.
    Staebler, D.L. and Wronski, C.R., Reversible Conductivity Changes in Discharge-Produced Amorphous Si, Appl. Phys. Lett., 1977, vol. 31, pp. 292–294.CrossRefADSGoogle Scholar
  17. 17.
    Tanielian, M., Adsorbate Effects on the Electrical Conductance of a-Si: H. Philos. Mag. B, 1982, vol. 45, pp. 435–462.CrossRefGoogle Scholar
  18. 18.
    Crandall, R.S., Defect Relaxation in Amorphous Silicon: Stretched Exponentials, the Meyer-Neldel Rule, and the Staebler-Wronski Effect, Phys. Rev. B: Condens. Mater., 1991, vol. 43, pp. 4057–4070.ADSGoogle Scholar
  19. 19.
    Anderson, D.A. and Paul, W., Transport Properties of a-Si: H. Alloys prepared by R.F. Sputtering, Philos. Mag. B, 1982, vol. 45, pp. 1–23.Google Scholar
  20. 20.
    Drüsedau, T. and Bindemann, R., The Meyer-Neldel Rule and the Fundamental Pre-Exponential Factor in the Conductivity of a-Si: H, Phys. Status Solidi B, 1986, vol. 136, pp. 61–64.CrossRefGoogle Scholar
  21. 21.
    Kushwaha, V.S., Mehta, N., Kushwaha, N., and Kumar, A., High-Field Conduction in a-Se70Te30 − xCdx Thin Films: Applicability of the Meyer-Neldel Rule, J. Optoelectron. Adv. Mater., 2005, vol. 7, pp. 2035–2040.Google Scholar
  22. 22.
    Kumar, D. and Kumar, S., Observation of the Meyer-Neldel Rule in a-Se60Te20Ge20 Thin Films in the Presence of Light, J. Optoelectron. Adv. Mater., 2004, vol. 6, pp. 777–780.Google Scholar
  23. 23.
    Kumar, D. and Kumar, S., High-Field Conduction in a-Se75In21Pb4 Thin Films: Applicability of the Meyer-Neldel Rule, Jpn. J. Appl. Phys., 2004, vol. 43, pp. 901–903.CrossRefADSGoogle Scholar
  24. 24.
    Wang, J.C. and Chen, Y.F., The Meyer-Neldel Rule in Fullerenes, Appl. Phys. Lett., 1998, vol. 73, pp. 948–950.CrossRefADSGoogle Scholar
  25. 25.
    Fortner, J., Karpov, V.G., and Saboungi, M.-L., The Meyer-Neldel Rule for Liquid Semiconductors, Appl. Phys. Lett., 1995, vol. 66, pp. 997–999.CrossRefADSGoogle Scholar
  26. 26.
    Dwivedi, S.K., Dixit, M., and Kumar, A., The Pre-Exponential Factor in Semiconducting Chalcogenide Glasses, J. Mater. Sci. Lett., 1997, vol. 17, pp. 233–235.CrossRefGoogle Scholar
  27. 27.
    Yelon, A. and Movaghar, B., The Meyer-Neldel Conductivity Prefactor for Chalcogenide Glasses, Appl. Phys. Lett., 1997, vol. 71, pp. 3549–3551.CrossRefADSGoogle Scholar
  28. 28.
    Shimakawa, K. and Abdel-Wahab, F., The Meyer-Neldel Rule in Chalcogenide Glasses, Appl. Phys. Lett., 1997, vol. 70, pp. 652–654.CrossRefADSGoogle Scholar
  29. 29.
    Varotsos, P.A., An Estimate of the Pressure Dependence of the Dielectric Constant in Alkali Halides, Phys. Status Solidi B, 1978, vol. 90, pp. 339–343.CrossRefGoogle Scholar
  30. 30.
    Varotsos, P., Determination of the Dielectric Constant of Alkali Halide Mixed Crystals, Phys. Status Solidi B, 1980, vol. 100, pp. K133–K138.CrossRefGoogle Scholar
  31. 31.
    Varotsos, P. and Alexopoulos, K., Thermodynamics of Point Defects and Their Relation with the Bulk Properties, Amsterdam: North Holland, 1986.Google Scholar
  32. 32.
    Varotsos, P., Determination of the Composition of the Maximum Conductivity or Diffusivity in Mixed Alkali Halides, J. Phys. Chem. Solids, 1981, vol. 42, pp. 405–407.CrossRefADSGoogle Scholar
  33. 33.
    Varotsos, P., On the Temperature Variation of the Bulk Modulus of Mixed Alkali Halides, Phys. Status Solidi B, 1980, vol. 99, pp. K93–K96.CrossRefGoogle Scholar
  34. 34.
    Varotsos, P. and Alexopoulos, K., Prediction of the Compressibility of Mixed Alkali Halides, J. Phys. Chem. Solids, 1980, vol. 41, pp. 1291–1294.CrossRefADSGoogle Scholar
  35. 35.
    Varotsos, P., Sarlis, N., and Lazaridou, M., Interconnection of Defect Parameters and Stress-Induced Electric Signals in Ionic Crystals, Phys. Rev. B: Condens. Matter, 1999, vol. 59, pp. 24–27.ADSGoogle Scholar
  36. 36.
    Varotsos, P. and Alexopoulos, K., Physical Properties of the Variations of the Electric Field of the Earth Preceding Earthquakes: I, Tectonophysics, 1984, vol. 110, pp. 73–94.CrossRefADSGoogle Scholar
  37. 37.
    Varotsos, P., Alexopoulos, K., Nomicos, K., and Lazaridou, M., Earthquake Prediction and Electric Signals, Nature (London), 1986, vol. 322, p. 120.CrossRefADSGoogle Scholar
  38. 38.
    Varotsos, P., Alexopoulos, K., Nomicos, K., and Lazaridou, M., Official Prediction Procedure in Greece, Tectonophysics, 1988, vol. 152, pp. 193–196.CrossRefADSGoogle Scholar
  39. 39.
    Sarlis, N., Lazaridou, M., Kapiris, P., and Varotsos, P., Numerical Model of the Selectivity Effect and the ΔV/L Criterion, Geophys. Res. Lett., 1999, vol. 26, pp. 3245–3248.CrossRefADSGoogle Scholar
  40. 40.
    Varotsos, P.A., Sarlis, N.V., and Skordas, E.S., Electric Fields That “Arrive” before the Time-Derivative of the Magnetic Field Prior to Major Earthquakes, Phys. Rev. Lett., 2003, vol. 91, article 148501 (4 pages).Google Scholar
  41. 41.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S., and Lazaridou, M.S., Entropy in the Natural Time-Domain, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2004, vol. 70, article 011106 (10 pages).Google Scholar
  42. 42.
    Varotsos, P.A., Sarlis, N.V., Tanaka, H.K., and Skordas, E.S., Some Properties of the Entropy in the Natural Time, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2005, vol. 71, article 032102 (4 pages).Google Scholar
  43. 43.
    Varotsos, P.A., Sarlis, N.V., Tanaka, H.K., and Skordas, E.S., Similarity of Fluctuations in Correlated Systems: The Case of Seismicity, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2005, vol. 72, article 041103 (8 pages).Google Scholar
  44. 44.
    Varotsos, P.A., Sarlis, N.V., Skordas, E.S., and Lazaridou, M.S., Natural Entropy Fluctuations Discriminate Similar Looking Electric Signals Emitted from Systems of Different Dynamics, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2005, vol. 71, article 011110 (11 pages).Google Scholar
  45. 45.
    Kumar, Manoj and Kumar, M., Temperature Dependence of Interatomic Separation, Physica B (Amsterdam), vol. 403, pp. 3672–3676.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Solid Slate Section, Department of PhysicsUniversity of AthensAthensGreece

Personalised recommendations