Skip to main content
Log in

Influence of microwave and ultrasonic treatment on the formation of CoFe2O4 under hydrothermal conditions

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The formation of CoFe2O4 nanocrystals under hydrothermal conditions at a temperature of 130°C is investigated. The average size of CoFe2O4 particles varies from 6 to 11 nm depending on the synthesis time. The hydrothermal medium is heated by two different methods, i.e., the microwave (with a synthesis time from 1 min to 2 h) and conventional (with a synthesis time from 30 min to 45 h) methods. It is demonstrated that the use of microwave heating considerably accelerates the formation of CoFe2O4 particles. Preliminary ultrasonic treatment for 3 min increases the phase formation rate in the case of microwave heating and hardly affects the occurrence of the process upon conventional heating. It is revealed that the exposure of the initial mixture (preliminarily treated with ultrasound) to room temperature for 2 h or longer almost completely reduces the efficiency of the action of ultrasonic treatment on the phase formation process under hydrothermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brusentsova, T.N., Kuznetsov, V.D., and Nikiforov, V.N., Synthesis and Investigation of Ferrite Nanoparticles for Magnetic Hyperthermia, Med. Fiz., 2005, no. 3, pp. 58–68.

  2. Washburn, C., Brown, D., Cabacungan, J., Venkataraman, J., and Kurinec, S.K., Application of Magnetic Ferrite Electrodeposition and Copper Chemical Mechanical Planarization for On-Chip Analog Circuitry, Mater. Res. Soc. Symp. Proc., 2005, vol. 869, pp. D2.3.1–D2.3.6.

    Google Scholar 

  3. Xiangfeng, Ch., Dongli, J., Yu, G., and Chenmou, Zh., Ethanol Gas Sensor Based on CoFe2O4 Nanocrystallines Prepared by Hydrothermal Method, Sens. Actuators B, 2006, vol. 120, no. 1, pp. 177–181.

    Article  Google Scholar 

  4. Xiangfeng, Ch., Dongli, J., and Chenmou, Zh., The Gas-Sensing Properties of Thick Film Sensors Based on Nano-ZnFe2O4 Prepared by Hydrothermal Method, Mater. Sci. Eng. B, vol. 129, nos. 1–3, pp. 150–153.

  5. Sandu, I., Presmanes, L., Alphonse, P., and Tailhades, Ph., Nanostructured Cobalt Manganese Ferrite Thin Films for Gas Sensor Application, Thin Solid Films, 2006, vol. 495, nos. 1–2, pp. 130–133.

    Article  ADS  CAS  Google Scholar 

  6. Komarneni, S., Tsuji, M., Wada, Y., and Tamaurab, Y., Nanophase Ferrites for CO2 Greenhouse Gas Decomposition, J. Mater. Chem., 1997, vol. 7, no. 12, pp. 2339–2340.

    Article  CAS  Google Scholar 

  7. Almjasheva, O.V. and Gusarov, V.V., Effect of ZrO2 Nanocrystals on the Stabilization of the Amorphous State of Alumina and Silica in the ZrO2-Al2O3 and ZrO2-SiO2 Systems, Fiz. Khim. Stekla, 2006, vol. 32, no. 2, pp. 224–229 [Glass Phys. Chem. (Engl. transl.), 2006, vol. 32, no. 2, pp. 162–166].

    Google Scholar 

  8. Sharikov, F.Yu., Almjasheva, O.V., and Gusarov, V.V., Thermal Analysis of Formation of ZrO2 Nanoparticles under Hydrothermal Conditions, Zh. Neorg. Khim., 2006, vol. 51, no. 10, pp. 1636–1640 [Russ. J. Inorg. Chem. (Engl. transl.), 2006, vol. 51, no. 10, pp. 1538–1543].

    CAS  Google Scholar 

  9. Al’myasheva, O.V., Korytkova, E.N., Maslov, A.V., and Gusarov, V.V., Preparation of Nanocrystalline Alumina under Hydrothermal Conditions, Neorg. Mater., 2005, vol. 41, no. 5, pp. 540–547 [Inorg. Mater. (Engl. transl.), 2005, vol. 41, no. 5, pp. 460–467].

    Google Scholar 

  10. Burukhin, A., Churagulov, B., Oleynikov, N., and Meskin, P., Synthesis of Nanocrystalline Nickel-Zinc Ferrites under Hydrothermal Conditions, in Proceedings of the Joint Sixth International Symposium on Hydrothermal Reactions and Fourth Conference on Solvo-Thermal Reactions, Kochi, Japan, 2000, pp. 553–556.

  11. Burukhin, A.A., Churagulov, B.R., Oleinikov, N.N., and Meskin, P.E., Synthesis of Nanosized Ferrite Powders from Hydrothermal and Supercritical Solutions, Zh. Neorg. Khim., 2001, vol. 46, no. 5, pp. 735–741 [Russ. J. Inorg. Chem. (Engl. transl.), 2001, vol. 46, no. 5, pp. 646–651].

    CAS  Google Scholar 

  12. Komarneni, S., Nanophase Materials by Hydrothermal, Microwave-Hydrothermal, and Microwave-Solvothermal Methods, Curr. Sci., 2003, vol. 85, no. 12, pp. 1730–1734.

    CAS  Google Scholar 

  13. Meskin, P.E., Hydrothermal Synthesis of Finely Dispersed Powders Based on Titania, Zirconia, and Hafnia with the Use of Microwave and Ultrasonic Treatments, Abstract of Cand. Sci. Dissertation, Moscow, 2007 [in Russian].

  14. Baranchikov, A.E., Ivanov, V.K., and Tretyakov, Yu.D., Sonochemical Synthesis of Inorganic Materials, Usp. Khim., 2007, vol. 76, no. 2, pp. 147–168.

    Google Scholar 

  15. Krishnaveni, T., Kanth, B.R., Raju, V.S.R., and Murthy, S.R., Fabrication of Multilayer Chip Inductors Using Ni-Cu-Zn Ferrites, J. Alloys Compd., 2006, vol. 414, nos. 1–2, pp. 282–286.

    Article  CAS  Google Scholar 

  16. Bousquet-Berthelin, C., Chaumont, D., and Stuerga, D., Flash Microwave Synthesis of Trevorite Nanoparticles, J. Solid State Chem., 2008, vol. 181, no. 3, pp. 616–622.

    Article  ADS  CAS  Google Scholar 

  17. Lee, J., Kim, Ch., Katoh, Sh., and Murakami, R., Microwave-Hydrothermal Versus Conventional Hydrothermal Preparation of Ni- and Zn-Ferrite Powders, J. Alloys Compd., 2001, vol. 325, nos. 1–2, pp. 276–280.

    Article  ADS  CAS  Google Scholar 

  18. Verma, S., Joy, P.A., Khollam, Y.B., Potdar, H.S., and Deshpande, S.B., Synthesis of Nanosized MgFe2O4 Powders by Microwave Hydrothermal Method, Mater. Lett., 2004, vol. 58, no. 6, pp. 1092–1095.

    Article  CAS  Google Scholar 

  19. Meskin, P.E., Ivanov, V.K., Barantchikov, A.E., Churagulov, B.R., and Tretyakov, Y.D., Ultrasonically-Assisted Hydrothermal Synthesis of Nanocrystalline ZrO2, TiO2, NiFe2O4, and Ni0.5Zn0.5Fe2O4 Powders, Ultrason. Sonochem., 2006, vol. 13, pp. 47–53.

    Article  PubMed  CAS  Google Scholar 

  20. Pozhidaeva, O.V., Korytkova, E.N., Drozdova, I.A., and Gusarov, V.V., Phase State and Particle Size of Ultradispersed Zirconium Dioxide as Influenced by Conditions of Hydrothermal Synthesis, Zh. Obshch. Khim., 1999, vol. 69, no. 8, pp. 1265–1269 [Russ. J. Gen. Chem., (Engl. transl.), 1999, vol. 69, no. 8, pp. 1219–1222].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kuznetsova.

Additional information

Original Russian Text © V.A. Kuznetsova, O.V. Almjasheva, V.V. Gusarov, 2009, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, V.A., Almjasheva, O.V. & Gusarov, V.V. Influence of microwave and ultrasonic treatment on the formation of CoFe2O4 under hydrothermal conditions. Glass Phys Chem 35, 205–209 (2009). https://doi.org/10.1134/S1087659609020138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659609020138

Key words

Navigation