Skip to main content
Log in

Sol-gel synthesis of compact nanohybrid structures based on silica gels

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Our recent achievements in the synthesis of monolithic SiO2 xerogels (nonfractured upon drying), as well as hybrid composite nanomaterials and silica glasses based on these xerogels, are considered briefly. A number of new promising methods are developed for preparing organic-inorganic nanohybrids, inorganic nanohybrids, and xerogels doped with transition metal and lanthanide complexes that are chemically bound to the silica matrix and exhibit interesting and technically valuable photophysical, photochemical, and electrochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sergeev, G.B., Nanokhimiya, Moscow: Moscow State University, 2003 [Nanochemistry, Amsterdam: Elsevier, 2006].

    Google Scholar 

  2. Poole, Ch.P. and Owens, F.J., Introduction to Nanotechnology, New York: Wiley, 2003. Translated under the title Nanotekhnologii, Moscow: Tekhnosfera, 2005.

    Google Scholar 

  3. Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., Drozdova, I.A., and Gusarov, V.V., Formation of Mg3Si2O5(OH)4 Nanotubes under Hydrothermal Conditions, Fiz. Khim. Stekla, 2004, vol. 30, no. 1, pp. 72–78 [Glass. Phys. Chem. (Engl. transl.), 2004, vol. 30, no. 1, pp. 51–55].

    Google Scholar 

  4. Henini, M., Quantum Dot Nanostructures, Mater. Today (Oxford), 2002, vol. 5, no. 6, pp. 48–53.

    Article  CAS  Google Scholar 

  5. Valiev, R.Z. and Aleksandrov, N.V., Ob’emnye nanostrukturnye metallicheskie materialy: poluchenie, struktura i svoistva (Bulk Nanostructured Metal Materials: Preparation, Structure, and Properties,), Moscow: Akademkniga, 2007 [in Russian].

    Google Scholar 

  6. Brinker, C.J. and Scherer, G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, San Diego, CA: Academic, 1990.

    Google Scholar 

  7. Sakka, S., Handbook of Sol-Gel Science and Technology, New York: Kluwer, 2005, vols. I–III.

    Google Scholar 

  8. Sakka, S., The Current State of Sol-Gel Technology, J. Sol-Gel Sci. Technol., 1994, vol. 3, no. 1, pp. 69–81.

    Article  ADS  CAS  Google Scholar 

  9. Petrovskii, G.T., Shashkin, V.S., and Yakhkind, A.K., The Sol-Gel Synthesis of Optical Vitreous Materials from Colloidal Silicas: Basic Methods and Prospects for Applications, Fiz. Khim. Stekla, 1997, vol. 23, no. 1, pp. 43–54 [Glass Phys. Chem. (Engl. transl.), 1997, vol. 23, no. 1, pp. 27–35].

    Google Scholar 

  10. Evstrop’ev, S.K., Klimova, A.V., Mazurina, E.K., Petrovskii, G.T., Salimov, Sh.K., Smirnov, N.V., Shashkin, V.S., Eshbekov, A.A., and Yudin, D.M., The Properties of Silica Sol-Based Vitreous Materials, Fiz. Khim. Stekla, 1994, vol. 20, no. 2, pp. 253–260 [Glass Phys. Chem. (Engl. transl.), 1994, vol. 20, no. 2, pp. 175–179].

    Google Scholar 

  11. Ishida, H., Cumar, G., Pohl, E.R., and Osterholtz, F.D., Molecular Characterization of Composite Interface, New York: Plenum, 1985, p. 157.

    Google Scholar 

  12. Aelion, R., Loebel, A., and Eirich, F., Hydrolysis of Ethyl Silicate, J. Am. Chem. Soc., 1950, vol. 72, pp. 5705–5712.

    Article  CAS  Google Scholar 

  13. Artaki, I., Bradley, M., Zerda, T.W., and Jonas, J., NMR and Raman Study of the Hydrolysis Reaction in Sol-Gel Processes, J. Phys. Chem., 1985, vol. 89, no. 12, pp. 4399–4404.

    Article  CAS  Google Scholar 

  14. Kirkbir, F., Murate, H., Meyers, D., Chaudhuri, R., and Sarkar, A., Parametric Study of Strength of Silica Gels, J. Non-Cryst. Solids, 1994, vol. 178, pp. 284–292.

    Article  ADS  CAS  Google Scholar 

  15. Chen, K.C., Tsuchiya, T., and Mackenzie, J.D., Sol-Gel Processing of Silica, J. Non-Cryst. Solids, 1986, vol. 81, pp. 227–237.

    Article  ADS  CAS  Google Scholar 

  16. Curran, M.D. and Stiegman, A.E., Morphology and Pore Structure of Silica Xerogels Made at Low pH, J. Non-Cryst. Solids, 1999, vol. 249, pp. 62–68.

    Article  ADS  CAS  Google Scholar 

  17. Kolby, M.W., Osaka, A., and Mackenzie, J.D., Temperature Dependence of the Gelation of Silicon Alkoxides, J. Non-Cryst. Solids, 1988, vol. 99, pp. 129–139.

    Article  Google Scholar 

  18. Pope, E.J.A. and Mackenzie, J.D., Sol-Gel Processing of Silica: The Role of the Catalyst, J. Non-Cryst. Solids, 1986, vol. 87, pp. 185–198.

    Article  ADS  CAS  Google Scholar 

  19. Huang, W.L., Liang, K.M., and Gu, S.R., Effect of HCl in a Two-Step Sol-Gel Process Using TEOS, J. Non-Cryst. Solids, 1999, vol. 258, pp. 234–238.

    Article  ADS  CAS  Google Scholar 

  20. Kaufman, V.R. and Avnir, D., Water Consumption during the Early Stages of the Sol-Gel Tetramethylorthosilicate Polymerization as Probed by Excited State Proton Transfer, J. Non-Cryst. Solids, 1988, vol. 99, pp. 379–386.

    Article  ADS  CAS  Google Scholar 

  21. Khimich, N.N. and Stolyar, S.V., Effect of Acidity of the Medium on Formation of Monolithic Silica Gels from Tetramethoxysilane by Sol-Gel Method, Zh. Prikl. Khim. (St. Petersburg), 1998, vol. 71, no. 10, pp. 1590–1595 [Russ. J. Appl. Chem. (Engl. transl.), 1998, vol. 71, no. 10, pp. 1690–1694].

    CAS  Google Scholar 

  22. Khimich, N.N., Venzel’, B.I., Drozdova, I.A., and Suslova, L.Ya., Trifluoroacetic Acid as a Novel Efficient Catalyst for Organic Sol-Gel Processes, Dokl. Akad. Nauk, 1999, vol. 366, nos. 1–3, pp. 361–363 [Dokl. Phys. Chem. (Engl. transl.), 1999, vol. 366, nos. 1–3, pp. 159–164].

    CAS  Google Scholar 

  23. Khimich, N.N., On the Problem of Drying of a Monolithic Silica Gel, Fiz. Khim. Stekla, 2004, vol. 30, no. 1, pp. 146–148 [Glass Phys. Chem. (Engl. transl.), 2004, vol. 30, no. 1, pp. 107–108].

    Google Scholar 

  24. Khimich, N.N., Koptelova, L.A., Doronina, L.A., and Drozdova, I.A., Synthesis of Monolithic Silica Gel in Alkaline Medium, Zh. Prikl. Khim. (St. Petersburg), 2003, vol. 76, no. 12, pp. 1956–1960 [Russ. J. Appl. Chem. (Engl. transl.), 2003, vol. 76, no. 12, pp. 1904–1960].

    Google Scholar 

  25. Khimich, N.N., Venzel’, B.I., and Koptelova, L.A., Fabrication of Monolithic Silicon Gel in a Nonaqueous Medium, Dokl. Akad. Nauk, 2002, vol. 385, nos. 4–6, pp. 790–792 [Dokl. Phys. Chem. (Engl. transl.), 2002, vol. 385, nos. 4–6, pp. 201–202].

    Google Scholar 

  26. Khimich, N.N., Semov, M.P., and Chepik, L.F., Nanocomposites in the Ru2+ Organic Complex-SiO2 System as a New Class of Metal-Polymer Complexes, Dokl. Akad. Nauk, 2004, vol. 394, no. 5, pp. 636–638 [Dokl. Chem. (Engl. transl.), 2004, vol. 394, part 2, pp. 31–33].

    Google Scholar 

  27. Aleksandrova, E.L. and Khimich, N.N., Photosensitivity of Thin Films of Semiconductor Nanocomposites Based on Metal-Organic Complexes with Cu+ and Ru2+, Fiz. Tekh. Poluprovodn. (St. Petersburg), 2004, vol. 38, no. 11, pp. 1321–1324 [Semiconductors (Engl. transl.), 2004, vol. 38, no. 11, pp. 1280–1283].

    Google Scholar 

  28. Khimich, N.N., Zdravkov, A.V., Aleksashkina, M.A., and Chepik, L.F., Organic-Inorganic Hybrids in the System Ruthenium Tris(diimine) Complexes-Silica, Zh. Prikl. Khim. (St. Petersburg), 2007, vol. 80, no. 3, pp. 360–365 [Russ. J. Appl. Chem. (Engl. transl.), 2007, vol. 80, no. 3, pp. 358–363].

    Google Scholar 

  29. Khimich, N.N., Zdravkov, A.V., and Aleksashkina, M.A., Synthesis of Ruthenium(II) Tris(2,2′-bipyridine) Complexes, Zh. Obshch. Khim., 2004, vol. 74, no. 7, pp. 1076–1079 [Russ. J. Gen. Chem. (Engl. transl.), 2004, vol. 74, no. 7, pp. 993–995].

    Google Scholar 

  30. Khimich, N.N., Zub, Yu.L., Koptelova, L.A., Mashchenko, T.S., Troshina, E.P., and Voronkov, M.G., Synthesis and Optical Properties of Nanohybrids in the System Constituted by Silica and Lanthanide Phosphoramide Complexes, Zh. Prikl. Khim. (St. Petersburg), 2006, vol. 79, no. 11, pp. 1789–1794 [Russ. J. Appl. Chem. (Engl. transl.), 2006, vol. 79, no. 11, pp. 1769–1774].

    Google Scholar 

  31. Zdravkov, A.V., Aleksandrova, E.L., Aseev, V.A., Nikonorov, N.V., and Khimich, N.N., Formation of Organo-Inorganic Hybrid Networks in the System Consisting of Tris(2,2′-bipyridine)ruthenium Complexes and Silica, Zh. Prikl. Khim. (St. Petersburg), 2008, vol. 81, no. 9, pp. 1457–1462 [Russ. J. Appl. Chem. (Engl. transl.), 2008, vol. 81, no. 9, pp. 1532–1537].

    Google Scholar 

  32. Khimich, N.N., Berdichevskii, G.M., Poddenezhnyi, E.N., Golubkov, V.V., Boiko, A.A., Ken’ko, V.M., Evreinov, O.B., and Koptelova, L.A., Sol-Gel Synthesis of an Optical Silica Glass Doped with Rare-Earth Elements, Fiz. Khim. Stekla, 2007, vol. 33, no. 2, pp. 210–215 [Glass Phys. Chem. (Engl. transl.), 2007, vol. 33, no. 2, pp. 152–155].

    Google Scholar 

  33. Khimich, N.N., Koptelova, L.A., and Khimich, G.N., Synthesis and Structure of Nanocomposites in the Aromatic Ester Dendrimer-SiO2 System, Zh. Prikl. Khim. (St. Petersburg), 2003, vol. 76, no. 3, pp. 457–462 [Russ. J. Appl. Chem. (Engl. transl.), 2003 vol. 76, no. 3, pp. 442–447].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Khimich.

Additional information

Original Russian Text © N.N. Khimich, A.V. Zdravkov, L.A. Koptelova, E.N. Poddenezhnyi, A.A. Boiko, 2009, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khimich, N.N., Zdravkov, A.V., Koptelova, L.A. et al. Sol-gel synthesis of compact nanohybrid structures based on silica gels. Glass Phys Chem 35, 181–190 (2009). https://doi.org/10.1134/S1087659609020102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659609020102

Key words

Navigation