Skip to main content
Log in

Thermal oxidation of gallium arsenide with transition metal nanolayers on the surface

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The physicochemical features of the interaction between nanofilms of iron triad metals and the gallium arsenide surface during thermal oxidation are analyzed. The role of oxides formed upon oxidation of iron, cobalt, and nickel metal films in the course of thermal oxidation of gallium arsenide is demonstrated, and the influence of the metal deposition method on the kinetics of oxidation, the composition, and the properties of the prepared samples is determined. Schemes are proposed for the development of the oxidation processes under investigation with due regard for the chemical specific features of the iron triad metals and their compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, K.M., Walukiewicz, W., Jaklevic, J.M., Haller, E.E., and Sands, T., Effects of Interface Reactions on Electrical Characteristics of Metal-GaAs Contacts, Appl. Phys. Lett., 1987, vol. 51, no. 3, pp. 189–191.

    Article  ADS  CAS  Google Scholar 

  2. Lepine, B., Lallaizon, C., Schieffer, P., Guivarc’h, A., Jezequel, G., Rocher, A., Abel, F., Cohen, C., Deputier, S., and Nguyen Van Dau, F., Fe3GaAs/GaAs(001): A Stable and Magnetic Metal-Semiconductor Heterostructure, Thin Solid Films, 2004, vol. 446, pp. 6–11.

    Article  ADS  CAS  Google Scholar 

  3. Deputier, S., Barrier, N., Guerin, R., and Guivarc’h, A., The Ternary Compound Fe3Ga2 − x Asx: A Promising Candidate for Epitaxial and Thermodynamically Stable Contacts on GaAs, J. Alloys Compd., 2002, vols. 262–263, pp. 416–422.

    Google Scholar 

  4. Takahashi, N., Zhang, T., Spangenberg, M., Greig, D., Shen, T.-H., Cornelius, S., Seddon, E.A., and Matthew, J.A.D., Spin-Resolved Photoelectron Spectroscopy of Ultrathin Fe Films on GaAs(001), Surf. Rev. Lett., 2002, vol. 9, no. 2, pp. 693–698.

    Article  CAS  Google Scholar 

  5. Zhang, X.X. and Zhang, Z., Growth and Magnetism of Ni Films on GaAs(001), J. Magn. Magn. Mater., 2002, vol. 240, pp. 404–406.

    Article  ADS  Google Scholar 

  6. Nuhoglu, C., Ayyildiz, E., Saglam, M., and Turut, A., Thermal Treatment of the MIS and Intimate Ni/n-LEC GaAs Schottky Barrier Diodes, Appl. Surf. Sci., 1998, vol. 135, pp. 350–356.

    Article  ADS  CAS  Google Scholar 

  7. Herfort, J., Braun, W., Trampert, A., Schonherr, H.-P., and Ploog, K.H., Atomically Engineered Interfaces for Spin Injection: Ultrathin Epitaxial Fe Films Grown on As- and Ga-Terminated GaAs(001) Substrates, Appl. Surf. Sci., 2004, vol. 237, pp. 181–188.

    ADS  CAS  Google Scholar 

  8. Ababou, S., Lepine, B., Pingel, R., Godefroy, A., Quemerais, A., Guivarch, A., and Jezequel, G., Growth of Cobalt on GaAs(001) Studied by Photoemission and Photoelectron Diffraction, Surf. Rev. Lett., 1998, vol. 5, no. 1, pp. 285–288.

    Article  CAS  Google Scholar 

  9. Kim, T.W. and Yoon, Y.S., Microstructural and Atomic Arrangement Studies in Fe(110)/GaAs(110) Heterostructures, J. Phys. Chem. Solids, 2000, vol. 61, pp. 847–851.

    Article  ADS  CAS  Google Scholar 

  10. Wu, Y.Z., Ding, H.F., Jing, C., Wu, D., Dong, G.S., Jin, X.F., Sun, K., and Zhu, S., Epitaxy and Magnetism of Co on GaAs(001), J. Magn. Magn. Mater., 1999, vols. 198–199, pp. 297–299.

    Article  Google Scholar 

  11. Monteverde, F., Michel, A., Guerin, Ph., and Eymery, J.-P., Epitaxial Growth of Fe on GaAs by Ion Beam Sputtering, Surf. Sci., 2001, vols. 482–485, pp. 872–877.

    Article  Google Scholar 

  12. Rahmoune, M., Eymery, J.P., and Denanot, M.F., Analysis of Interfacial Reactions of Fe Films on Monocrystalline GaAs, J. Magn. Magn. Mater., 1997, vol. 175, pp. 219–227.

    Article  ADS  CAS  Google Scholar 

  13. Thurmond, C.D., Schwartz, G.P., Kammlott, G.W., and Schwartz, B., GaAs Oxidation and the Ga-As-O Equilibrium Phase Diagram, J. Electrochem. Soc., 1980, vol. 127, no. 6, pp. 1366–1371.

    Article  CAS  Google Scholar 

  14. Schwarz, G.P., Gualtieri, G.J., Griffiths, J.E., Thurmond, C.D., and Schwartz, B., Oxide-Substrate and Oxide-Oxide Chemical Reactions in Thermally Annealed Anodic Films on GaSb, GaAs, and GaP, J. Electrochem. Soc., 1980, vol. 127, no. 11, pp. 2488–2499.

    Article  Google Scholar 

  15. Schmuki, P., Hussey, R.J., Sproule, G.I., Tao, Y., Wasilewski, Z.R., McCarey, J.P., and Graham, M.J., Nature and Growth of Anodic and Thermal Oxides on GaAs and AlxGa1 − x As, Corros. Sci., 1999, vol. 41, pp. 1467–1474.

    Article  CAS  Google Scholar 

  16. Mittova, I.Ya., Sviridova, V.V., and Tikhomirova, E.V., Kinetics of Thermal Oxidation of SAGOCh-1(111) GaAs in Oxygen, in Fizikokhimiya materialov i protsessov v mikroelektronike (Physical Chemistry of Materials and Processes in Microelectronics), Voronezh: Voronezh State University, 1989, pp. 166–170 [in Russian].

    Google Scholar 

  17. Mittova, I.Ya. and Ponomareva, N.I., Thermal Oxidation of GaAs in Oxygen, in Fizikokhimiya geterogennykh sistem. Sbornik nauchnykh trudov (Physical Chemistry of Heterogeneous Systems: Collection of Scientific Articles), Voronezh: Voronezh State University, 1988, pp. 27–31 [in Russian].

    Google Scholar 

  18. Breza, Yu.A., Venger, E.F., Konakova, R.V., Lyapin, V.G., Milenin, V.V., Statov, V.A., and Tyurik, Yu.A., Physicochemical Features of Formation of Metal-A 3 B 5 Compound Interfaces and the Possibility of Predicting Interfacial Interactions, Poverkhnost, 1998, no. 5, pp. 110–127.

  19. Venger, E.F., Konakova, R.V., Korotchenkov, G.S., Milenin, P.V., Russu, E.V., Prokopenko, I.V., Mezhfaznye vzaimodeistviya i mekhanizmy degradatsii v strukturakh metall-InP i metall-GaAs (Interfacial Interactions and Mechanisms of Degradation of Metal-InP and Metal-GaAs Structures), Konakova, R.V., Ed., Kiev: KTNK, 1999 [in Russian].

    Google Scholar 

  20. Testova, N.A., Golubenko, A.N., Kokovin, G.A., and Sysoev, S.V., Prediction of the Phase Composition of Transition Layers Formed at the Gallium Arsenide-Nickel Interface, Neorg. Mater., 1986, vol. 22, no. 11, pp. 1781–1785.

    CAS  Google Scholar 

  21. Handbook of Thin Film Technology, Maissel, L. and Glang, R., Eds., New York: McGraw-Hill, 1970. Translated under the title Tekhnologiya tonkikh plenok (spravochnik), Moscow: Sovetskoe Radio, 1977, vol. 1.

    Google Scholar 

  22. Danilin, B.S. and Syrchin, V.K., Magnetronnye raspylitel’nye sistemy (Magnetron Sputtering Systems), Moscow: Radio i Svyaz’, 1982 [in Russian].

    Google Scholar 

  23. Mattox, D.M., Particle Bombardment Effect on Thin-Film Deposition: A Review, J. Vac. Sci. Technol., A, 1989, vol. 7(3), pp. 1105–1114.

    Article  ADS  CAS  Google Scholar 

  24. Ramana Murty M.V., Sputtering: the Material Erosion Tool, Surf. Sci., 2002, vol. 500, pp. 523–544.

    Article  ADS  Google Scholar 

  25. Rozhanskii, N.V. and Akimov, A.G., Investigation into the Interaction of Pd Thin Films with GaAs Single Crystal during Annealing in Electron Microscope, Poverkhnost, 1990, no. 12, pp. 57–68.

  26. Prinz, G.A., Stabilization of bcc-Co Via Epitaxial Growth on GaAs, Phys. Rev. Lett., 1985, vol. 54, no. 10, pp. 1051–1054.

    Article  PubMed  ADS  CAS  MathSciNet  Google Scholar 

  27. Jin, X.F., Interfaces between Magnetic Thin Films and GaAs Substrate, J. Electron Spectrosc. Relat. Phenom., 2001, vols. 114–116, pp. 771–776.

    Article  Google Scholar 

  28. Rahmoune, M., Eymery, J.P., Goudeau, Ph., and Denanot, M.F., A Transmission Electron Microscopy Study of Interfacial Reactions in the Fe/GaAs System, Thin Solid Films, 1996, vol. 289, pp. 261–266.

    Article  ADS  CAS  Google Scholar 

  29. Yang, J., Makihara, K., Nakai, H., Hashimoto, M., Barna, A., and Barna, P.B., Growth Structure of Nickel Films on GaAs(001) by D.C.-Biased Plasma-Sputter-Deposition, Thin Solid Films, 1998, vol. 319, pp. 115–119.

    Article  ADS  CAS  Google Scholar 

  30. Ermolovich, I.B., Il’in, I.Yu., Konakova, R.V., Milenin, V.V., and Naumovets, A.A., Effect of Ion-Induced Processes on the Characteristics of Metal-GaAs Interfaces, Poverkhnost, 1996, no. 5, pp. 83–87.

  31. Koskia, K., Holsa, J., and Julieta, P., Properties of Aluminum Oxide Thin Films Deposited by Reactive Magnetron Sputtering, Thin Solid Films, 1999, vol. 339, pp. 240–248.

    Article  ADS  Google Scholar 

  32. Ferreira, F.F., Tabacniks, M.H., Fantini, M.C.A., Faria, I.C., and Gorenstein, A., Electrochromic Nickel Oxide Thin Films Deposited under Different Sputtering Conditions, Solid State Ionics, 1996, vols. 86–88, pp. 971–976.

    Article  Google Scholar 

  33. Hauffe, K., Reaktionen in und an festen Stoffen, Berlin: Springer, 1966. Translated under the title Reaktsii v tverdykh telakh i na ikh poverkhnosti, Moscow: Inostrannaya Literatura, 1963 [in German and in Russian].

    Google Scholar 

  34. L’Oxydation des métaux, Bénard, J., Ed., Paris: Gauthier-Villars, 1962. Translated under the title Okislenie metallov, Moscow: Metallurgiya, 1968.

    Google Scholar 

  35. Roberts, M. and McKee, C., Chemistry of the Metal-Gas Interface, Oxford: Oxford Univ. Press, 1978. Translated under the title Khimiya poverkhnosti razdela metall-gaz, Moscow: Mir, 1981.

    Google Scholar 

  36. Men’, A.N., Vorob’ev, Yu.P., and Chufarov, G.I., Fizikokhimicheskie svoistva nestekhiometricheskikh okislov (Physicochemical Properties of Nonstoichiometric Oxides), Moscow: Khimiya, 1973 [in Russian].

    Google Scholar 

  37. Tret’yakov, Yu.D., Khimiya nestekhiometricheskikh okislov (Chemistry of Nonstoichiometric Oxides), Moscow: Moscow State University, 1974 [in Russian].

    Google Scholar 

  38. Perel’man, F.M. and Zvorykin, A.Ya., Kobal’t i nikel’ (Cobalt and Nickel), Moscow: Prosveshchenie, 1975 [in Russian].

    Google Scholar 

  39. Hansen, M. and Anderco, K., Constitution of Binary Alloys, New York: McGraw-Hill, 1958. Translated under the title Struktury dvoinykh splavov, Moscow: Metallurgizdat, 1962.

    Google Scholar 

  40. Leygraf, C. and Ekelund, S., A LEED-AES Study of the Oxidation of Fe (110) and Fe (100), Surf. Sci., 1973, vol. 40, no. 3, pp. 609–635.

    Article  ADS  CAS  Google Scholar 

  41. Pignocco, A.J. and Pellissier, G.E., LEED Studies of Oxygen Adsorption and Oxide Formation on an (011) Iron Surface, Surf. Sci., 1967, vol. 7, no. 3, pp. 261–278.

    Article  ADS  CAS  Google Scholar 

  42. Tomina, E.V., Sukhochev, A.S., Meshcheryakova, E.K., and Mittova, I.Ya., Effect of Cobalt Thin Layers on the Gallium Arsenide Surface on the Oxidation of Semiconductor, Poverkhnost, 2008 (in press).

  43. Graham, M.J. and Hussey, R.J., Characterization and Growth of Oxide Films, Corros. Sci., 2002, vol. 44, pp. 319–330.

    Article  CAS  Google Scholar 

  44. Kazenas, E.K. and Chizhikov, D.M., Davlenie i sostav para nad okislami khimicheskikh elementov (Vapor Pressure and Composition over Oxides of Chemical Elements), Moscow: Nauka, 1976 [in Russian].

    Google Scholar 

  45. Kiselev, Yu.M. and Tretyakov, Yu.D., The Problem of Oxidation State Stabilisation and Some Regularities of a Periodic System of the Elements, Usp. Khim., 1999, vol. 68, no. 5, pp. 401–416.

    Google Scholar 

  46. Kaul, A.R., Gorbenko, O.Yu., and Kamenev, A.A., The Role of Heteroepitaxy in the Development of New Thin-Film Oxide-Based Functional Materials, Usp. Khim., 2004, vol. 73, no. 9, pp. 932–953.

    Google Scholar 

  47. Mittova, I.Ya. and Pshestanchik, V.R., The Chemistry of Processes Which Create Dielectric Layers with Functional Group Substituents on Semiconductors by Impurity Thermo-Oxidation, Usp. Khim., 1991, vol. 60, no. 9, pp. 1898–1919.

    CAS  Google Scholar 

  48. Han, Q. and Schmidt-Fetzer, R., Reaction Diffusion at the Interface of Mo/GaAs Contacts, Z. Metallkd., 1993, vol. 84, no. 9, pp. 605–612.

    Google Scholar 

  49. Mittova, I.Ya., Prokin, A.N., Gavryutin, V.N., Sukhochev, A.S., and Kashkarov, V.M., Solid-State Reactions Underlying the Thermal Oxidation of Ni/InP Structures, Neorg. Mater., 2001, vol. 37, no. 4, pp. 399–404 [Inorg. Mater. (Engl. transl.), 2001, vol. 37, no. 4, pp. 321–326].

    Article  Google Scholar 

  50. Akhin’ko, I.A., Grigor’ev, A.T., Gol’dberg, E.Ya., Il’ichev, E.A., Inkin, V.N., Lipshits, T.L., Lotsman, A.P., and Orlova, I.G., Thermal Oxidation in the Technology of GaAs Integrated Circuits, Mikroelektronika, 1996, vol. 25, no. 2, pp. 153–157 [Russ. Microelectron. (Engl. transl.), 1996, vol. 25, no. 2, pp. 138–142].

    CAS  Google Scholar 

  51. Mittova, I.Ya., Soshnikov, I.M., Terekhov, V.A., and Shchukarev, A.V., Thermal Oxidation of NiS/InP Structures, Neorg. Mater., 1997, vol. 33, no. 6, pp. 652–654 [Inorg. Mater. (Engl. transl.), 1997, vol. 33, no. 6, pp. 543–545].

    Google Scholar 

  52. Mittova, I.Ya., Tomina, E.V., Samsonov, A.A., Lukin, A.N., and Simonov, S.P., Thermal Oxidation of InP Surfaces Modified with NiO + PbO Mixtures, Neorg. Mater., 2005, vol. 41, no. 4, pp. 391–399 [Inorg. Mater. (Engl. transl.), 2005, vol. 41, no. 4, pp. 323–330].

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Sukhochev.

Additional information

Original Russian Text © A.S. Sukhochev, E.V. Tomina, I.Ya. Mittova, 2008, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhochev, A.S., Tomina, E.V. & Mittova, I.Y. Thermal oxidation of gallium arsenide with transition metal nanolayers on the surface. Glass Phys Chem 34, 724–741 (2008). https://doi.org/10.1134/S1087659608060102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659608060102

Keywords

Navigation