Skip to main content
Log in

Phonon dispersion in binary metallic glasses

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The theoretical computation of the phonon dynamics of two binary metallic glasses Zr67Ni33 and Co67Zr33 have been studied from the model potential formalism using three different theoretical models proposed by Hubbard-Beeby, Takeno-Goda, and Bhatia-Singh. Five local field correction functions, viz., Hartree, Taylor, Ichimaru-Utsumi, Farid et al., and Sarkar et al., are used for the first time in the present investigation to study the screening influence on the aforesaid properties. The pair potential is computed in the Wills-Harrison form and used to study the eigenfrequencies of longitudinal and transverse phonon modes. The present data on phonon dispersion curves of the Zr67Ni33 glass are compared with the available MD results at different temperatures. To explain the electron-ion interaction, the pseudo-alloy-atom model is applied for the first time instead of the Vegard’s law. Further, thermodynamic and elastic properties have also been calculated from the elastic part of the phonon dispersion curves. Computed yielding of the Zr67Ni33 glass is found in fair agreement with the available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aihara, T., Jr. and Masumoto, T., Dispersion of Collective Excitations of Amorphous and Liquid Zr67Ni33 Alloys, J. Phys.: Condens. Mater., 1995, vol. 7, pp. 1525–1541.

    Article  ADS  CAS  Google Scholar 

  2. Aihara, T., Jr., Kawazoe, Y., and Masumoto, T., Molecular Dynamics Simulation for Binary Amorphous Zr-Ni Alloys, J. Non-Cryst. Solids, 1996, vols. 250–252, pp. 875–878.

    Article  Google Scholar 

  3. Gupta A., Prasad, A., Bhandari, D., Jain, K.C, and Saxena, N.S., Vibrational Dynamics of Zr67Ni33 Amorphous Alloys, J. Phys. Chem. Solids, 1997, vol. 58, no. 1, pp. 33–37.

    Article  ADS  CAS  Google Scholar 

  4. Lad, K.N. and Pratap, A., Phonon Dispersion in Amorphous Zr-Ni Alloys, Physica B (Amsterdam), 2003, vol. 334, pp. 135–146.

    ADS  CAS  Google Scholar 

  5. Engelhardt, M.A., Jaswal, S.S., and Sellmyer, D.J., Photoemission and Electronic Structure of Tungsten-Based Metallic Glasses and Alloys, Phys. Rev. B: Condens. Matter, 1991, vol. 44, no. 23, pp. 12671–12679.

    ADS  CAS  Google Scholar 

  6. Hubbard, J. and Beeby, J.L., Collective Motion in Liquids, J. Phys. C: Solid State Phys., 1969, vol. 2, no. 2, pp. 556–571.

    Article  ADS  Google Scholar 

  7. Bhatia, A.B. and Singh, R.N., Phonon Dispersion in Metallic Glasses: A Simple Model, Phys. Rev. B: Condens. Matter, 1985, vol. 31, no. 8, p. 4758.

    ADS  Google Scholar 

  8. Shukla, M.M. and Campanha, J.R., Lattice Dynamics of Metallic Glass Ca70Mg30 on the Model of Bhatia and Singh, Acta Phys. Pol., A, 1998, vol. 94, no. 4, pp. 655–660.

    CAS  Google Scholar 

  9. Takeno, S. and Goda, M., A Theory of Phonons in Amorphous Solids and Its Implications to Collective Motion in Simple Liquids, Prog. Theor. Phys., 1971, vol. 45, no. 2, pp. 331–352.

    Article  ADS  CAS  Google Scholar 

  10. Takeno, S. and Goda, M., A Theory of Phonon-Like Excitations in Non-Crystalline Solids and Liquids, Prog. Theor. Phys., 1972, vol. 47, no. 3, pp. 790–806.

    Article  ADS  CAS  Google Scholar 

  11. Wills, J.M and Harrison, W.A., Interionic Interactions in Transition Metals, Phys. Rev. B: Condens. Matter, 1983, vol. 28, no. 6, pp. 4363–4373.

    ADS  CAS  Google Scholar 

  12. Gajjar, P.N., Vora, A.M, and Jani, A.R., Vibrational Dynamics of Ca70Mg30 Metallic Glass, in Proceedings of the IX Asia Pacific Physics Conference, Hanoi, Vietnam, 2006, Vietnam: Gioi, 2006, pp. 429–432.

    Google Scholar 

  13. Vora Aditya, M., Phonon Dispersion in Ca70Mg30 Metallic Glass, Chin. Phys. Lett., 2006, vol. 23, no. 7, pp. 1872–1875.

    Article  ADS  Google Scholar 

  14. Vora Aditya, M., Computation of Phonon Dynamics of Mg70Zn30 Glass, J. Mater. Sci., 2007, vol. 42, pp. 935–940.

    Article  Google Scholar 

  15. Vora Aditya, M., Pseudopotential in the Study of Phonon Dynamics of Pd-Based Metallic Glasses, J. Non-Cryst. Solids, 2006, vol. 352, pp. 3217–3223.

    Article  ADS  Google Scholar 

  16. Vora Aditya, M., Phonon Dispersion in Amorphous Ni-Alloys, Acta Phys. Pol., A, 2007, vol. 111, no. 6, pp. 859–871.

    ADS  Google Scholar 

  17. Vora Aditya, M., Vibrational Dynamics of Non-Crystalline Glassy Alloys, Front. Mater. Sci. China, 2007, vol. 1, no. 4, pp. 366–378.

    Article  Google Scholar 

  18. Harrison, W.A., Pseudopotentials in the Theory of Metals, New York: Benjamin, 1966.

    Google Scholar 

  19. Taylor, R., A Simple, Useful Analytical Form of the Static Electron Gas Dielectric Function, J. Phys. F: Met. Phys., 1978, vol. 8, pp. 1699–1702.

    Article  ADS  CAS  Google Scholar 

  20. Ichimaru, S. and Utsumi, K., Dielectric Formulation of Strongly Coupled Electron Liquids at Metallic Densities: IV. Static Properties in the Low-Density Domain and the Wigner Crystallization, Phys. Rev. B: Condens. Matter, 1981, vol. 24, no. 6, pp. 3220–3225.

    ADS  Google Scholar 

  21. Farid, B., Heine, V., Engel, G.E., and Robertson, I.J., Extremal Properties of the Harris-Foulkes Functional and an Improved Screening Calculation for the Electron Gas, Phys. Rev. B: Condens. Matter, 1993, vol. 48, no. 16, pp. 11602–11621.

    ADS  CAS  Google Scholar 

  22. Sarkar, A., Sen, D.S., Haldar, S., and Roy, D., Static Local Field Factor for Dielectric Screening Function of Electron Gas at Metallic and Lower Densities, Mod. Phys. Lett. B, 1998, vol. 12, vol. 16, pp. 639–648.

    Article  ADS  CAS  Google Scholar 

  23. Heine, V. and Weaire, D., in Solid State Physics, Ehrenreich, H. and Turnbull, D., Eds., New York: Academic, 1970, vol. 24, p. 249.

    Google Scholar 

  24. Hafner, J. and Heine, V., The Crystal Structures of the Elements: Pseudopotential Theory Revisited, J. Phys. F: Met. Phys., 1983, vol. 13, pp. 2479–2501.

    Article  ADS  CAS  Google Scholar 

  25. Hafner, J., Structure and Vibrational Dynamics of the Metallic Glasses Ca70Mg30, Phys. Rev. B: Condens. Matter, 1983, vol. 27, no. 2, pp. 678–694.

    ADS  CAS  Google Scholar 

  26. Kovalenko, N.P. and Krasny, Yu.P., On the Low Temperature Anomaly of Metal Glass Heat Capacity I, Physica B (Amsterdam), 1990, vol. 162, pp. 115–121.

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya M. Vora.

Additional information

Original Russian Text © Aditya M. Vora, 2008, published in Fizika i Khimiya Stekla.

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vora, A.M. Phonon dispersion in binary metallic glasses. Glass Phys Chem 34, 671–682 (2008). https://doi.org/10.1134/S1087659608060047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659608060047

Keywords

Navigation