Skip to main content
Log in

Nanobioelectronics of DNA: From fundamental problems to applications

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

This paper presents a review of theoretical and practical approaches to the development of the elemental basis of nanoelectronics, i.e., the use of DNA as molecular wires and DNA-based electronic logical cells and nanosensors. A general method for calculating the electron mobility in regular nucleotide sequences is described. The possibility of designing an electronic biochip based on an idea of measurement of the conductance of oligonucleotides is considered. The principle of operation of this nanobiochip is based on the fact that the conductance of a single-chain oligonucleotide changes upon hybridization with a complementary chain. The principle of creation of an XOR logic element (excluded or) based on a two-chain oligonucleotide with control electrodes is determined. It is shown that the appropriate properties are exhibited by DNA duplexes in which electron wave interference that is responsible for the duplex conductance should lead to a logical table corresponding to the XOR element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fink, H.-W. and Schönenberg, C., Electrical Conduction through DNA Molecules, Nature (London), 1999, vol. 398, no. 6726, pp. 407–410.

    Article  ADS  CAS  Google Scholar 

  2. Kasumov, A.Y., Kociak, M., Gueron, S., Reulet, B., Volkov, V.T., Klinov, D.V., and Bouchiat, H., Proximity Induced Superconductivity in DNA, Science (Washington), 2001, vol. 291, no. 5502, pp. 280–282.

    Article  ADS  CAS  Google Scholar 

  3. Porath, D., Bezryadin, A., de Vries, S., and Dekker, C., Direct Measurement of Electrical Transport through DNA Molecules, Nature (London), 2000, vol. 403, no. 6770, pp. 635–638.

    Article  ADS  CAS  Google Scholar 

  4. Kutnjak, Z., Filipic, C., Podgornic, R., Nordenskiold, L., and Korolev, N., Electrical Conduction in Native Deoxyribonucleic Acid: Hole Hopping Transfer Mechanism, Phys. Rev. Lett., 2003, vol. 90, no. 3, pp. 098101-1–098101-4.

    ADS  Google Scholar 

  5. Dekker, C. and Ratner, M.A., Electric Properties of DNA, Phys. World, 2001, vol. 14, no. 8, pp. 29–33.

    CAS  Google Scholar 

  6. Porath, D., Cuniberti, G., and Di Felice, R., Charge Transport in DNA-Based Devices, Top. Curr. Chem., 2004, vol. 237, pp. 183–227.

    CAS  Google Scholar 

  7. Yoo, K.-H., Ha, D.H., Lee, J.-O., Park, J.W., Kim, J.J., Lee, H.-Y., Kawai, T., and Choi, H.Y., Electrical Conduction through Poly (dA)-(dT) and Poly (dG)-Poly (dC) DNA Molecules, Phys. Rev. Lett., 2001, vol. 87, no. 19, pp. 198102-1–198102-4.

    Article  ADS  Google Scholar 

  8. Braun, E., Eichen, Y., Sivan, U., and Ben-Yoseph, G., DNA-Templated Assembly and Electrode Attachment of a Conducting Silver Wire, Nature (London), 1998, vol. 391, no. 6669, pp. 775–778.

    Article  ADS  CAS  Google Scholar 

  9. Lakhno, V.D. and Fialko, N.S., Hole Mobility in a Homogeneous Nucleotide Chain, Pis’ma Zh. Eksp. Teor. Fiz., 2003, vol. 78, no. 5, pp. 786–788 [JETP Lett. (Engl. transl.), 2003, vol. 78, no. 5, pp. 336–338].

    Google Scholar 

  10. Lakhno, V.D. and Fialko, N.S., HSSH-Model of Hole Transfer in DNA, Eur. Phys. J. B, 2005, vol. 43, no. 2, pp. 279–281.

    Article  ADS  CAS  Google Scholar 

  11. Lakhno, V.D. and Sultanov, V.B., On the Possibility of Electronic DNA Nanobiochips, J. Chem. Theory Comput., 2007, vol. 3, no. 3, pp. 703–705.

    Article  CAS  Google Scholar 

  12. Lakhno, V.D., Sultanov, V.B., and Pettitt, B.M., Combined Hopping-Superexchange Model of a Hole Transfer in DNA, Chem. Phys. Lett., 2004, vol. 400, nos. 1–3, pp. 47–53.

    Article  ADS  CAS  Google Scholar 

  13. Tsend, R.J., Tsai, C., Ma, L., Ouyang, J., Ozkan, C.S., and Yang, Y., Digital Memory Device Based on Tobacco Mosaic Virus Conjugated with Nanoparticles, Nat. Nanotechnol., 2006, vol. 1, no. 1, pp. 72–77.

    Article  ADS  Google Scholar 

  14. Lakhno, V.D. and Sultanov, V.B., Electronic Logical Gate XOR on the Basis of DNA, Mat. Biol. Bioinf., 2006, vol. 1, no. 1, pp. 123–126.

    Google Scholar 

  15. Ratner, M. and Ratner, D., Nanotechnology: A Gentle Introduction to the Next Big Idea, Upper Saddle River (NJ, United States): Prentice Hall, 2002. Translated under the title Nanotekhnologiya: prostoe ob’yasnenie ocherednoi genial’noi idei, Moscow: Vil’yams, 2004.

    Google Scholar 

  16. Rakitin, A., Aich, P., Papadopoulos, C., Kobzar, Yu., Vedeneev, A.S., Lee, J.S., and Xu, J.M., Metallic Conduction through Engineered DNA: DNA Nanoelectronic Building Blocks, Phys. Rev. Lett., 2001, vol. 86, no. 16, pp. 3670–3673.

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Lakhno.

Additional information

Original Russian Text © V.D. Lakhno, 2008, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakhno, V.D. Nanobioelectronics of DNA: From fundamental problems to applications. Glass Phys Chem 34, 666–670 (2008). https://doi.org/10.1134/S1087659608060035

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659608060035

Keywords

Navigation