Skip to main content
Log in

Self-organization as the rational choice of the direction of a chemical process

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Shevchenko, V.Ya., Chemical Self-Organization in Nanoparticle Technology (Nanotechnology), in Belaya kniga po nanotekhnologiyam: Issledovaniya v oblasti nanochastits, nanostruktur i nanokompozitov v Rossiiskoi Federatsii (po materialam Pervogo Vserossiiskogo soveshchaniya uchenykh, inzhenerov i proizvoditelei v oblasti nanotekhnologii) (White Book on Nanotechnologies: Investigations in the Field of Nanoparticles, Nanostructures, and Nanocomposites in the Russian Federation (Proceedings of the First All-Russia Conference of Researchers, Engineers, and Manufacturers in the Field of Nanotechnologies)), Shevchenko, V.Ya., Ed., Moscow: LKI, 2008, pp. 44–49 [in Russian].

    Google Scholar 

  2. Nicolis, G. and Prigogine, I.R., Exploring Complexity: An Introduction, New York: W.H. Freeman, 1989. Translated under the title Poznanie slozhnogo: Vvedenie. Seriya sinergetika: ot proshlogo k budushchemu, Moscow: Editorial URSS, 2008.

    Google Scholar 

  3. Nicolis, G. and Prigogine, I.R., Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations, New York, Wiley, 1977. Translated under the title Samoorganizatsiya v neravnovesnykh sistemakh. Ot dissipativnykh struktur k uporyadochennosti cherez fluktuatsii, Moscow: Mir, 1979.

    MATH  Google Scholar 

  4. Rudenko, A.P., Criteria for Open Systems Providing Self-Organizing and Progressive Evolution Processes, in Sinergetika: Trudy seminara (Synergetics: Proceedings of a Workshop), Moscow: Moscow State University, 2004, vol. 7, pp. 71–86 [in Russian].

    Google Scholar 

  5. Moiseev, N.N., Algoritmy Razvitiya (Algorithms of Development), Moscow: Nauka, 1987 [in Russian].

    Google Scholar 

  6. Zhabrev, V.A., Luk’yanov, G.N., Margolin, V.I., Rybalko, V.V., and Tupik, V.A., Vvedenie v nanotekhnologiyu: Uchebnoe posobie (Introduction to the Nanotechnology: A Manual), Zelenograd, Moscow oblast (Russia): Moscow State Institute of Electronic Engineering (Technical University), 2007 [in Russian].

    Google Scholar 

  7. Shumilova, T.G., Carbon Nanophases, in Nanomineralogiya. Ul’tra- i mikrodispersnoe sostoyanie mineral’nogo veshchestva (Nanomineralogy: Ultradospersed and Microdospersed State of Minerals), St. Petersburg: Nauka, 2005, pp. 210–231 [in Russian].

    Google Scholar 

  8. Petrov, Yu.I., Klastery i malye chastitsy (Clusters and Small Particles), Moscow: Nauka, 1986 [in Russian].

    Google Scholar 

  9. Nepiiko, S.A., Fizicheskie svoistva malykh metallicheskikh chastits (Physical Properties of Small Metal Particles), Kiev: Naukova Dumka, 1985 [in Russian].

    Google Scholar 

  10. Ivanov, V.K. and Ipatov, A.N., Many-Body Calculations for Metallic Clusters Using the Jellium Model, in Correlations in Clusters and Related Systems, Connerade, J.-P., Ed., Singapore: World Sci., 1996, p. 141.

    Google Scholar 

  11. Moiseev, I.I. and Vargaftik, M.N., Clusters and Colloidal Metals in Catalysis, Zh. Obshch. Khim., 2002, vol. 72, no. 4, pp. 550–560 [Russ. J. Gen. Chem. (Engl. transl.), 2002, vol. 72, no. 4, 512–522].

    Google Scholar 

  12. Vyatkin, G.P., Boitinger, E.M., and Pesin, L.A., Opredelenie kharaktera gibridizatsii valentnykh sostoyanii ugleroda spektroskopicheskimi metodami (Determination of Hybridization of Valence States of Carbon by Spectroscopic Methods), Chelyabinsk: Chelyabinsk State Technical University, 1996.

    Google Scholar 

  13. Bazant, V., Chvalovsky, V., and Rathousky, J., Organosilicon Compounds, New York: Academic, 1965. Translated under the title Silikony, Moscow: Gos. Nauchn.-Tekh. Iizd. Khim. Lit., 1960 [in Russian].

    Google Scholar 

  14. Andrianov, K.A., Polimery s neorganicheskimi glavnymi tsepyami molekul (Polymers with Inorganic Main Chains of Molecules), Moscow: Akad. Nauk SSSR, 1962 [in Russian].

    Google Scholar 

  15. Andrianov, K.A. and Khananashvili, L.M., Tekhnologiya elementoorganicheskikh monomerov i polimerov (Technology of Organoelement Monomers and Polymers), Moscow: Khimiya, 1973 [in Russian].

    Google Scholar 

  16. Andrianov, K.A., On the Most Important Directions of Development of Chemistry of High-Molecular Organosilicon Compounds, in Khimiya i prakticheskoe primenenie kremneorganicheskikh soedinenii. Trudy konferentsii (Proceedings of the Conference on the Chemistry and Practical Application of Organosilicon Compounds), Leningrad: Tsentr. Byuro Tekh. Inf., 1958, Issue 2, pp. 3–20 [in Russian].

    Google Scholar 

  17. Zhdanov, A.A. and Andrianov, K.A., Polyorganometallosiloxanes and Polyorganosiloxymetalloxanes, in Khimiya i prakticheskoe primenenie kremneorganicheskikh soedinenii. Trudy konferentsii (Proceedings of the Conference on the Chemistry and Practical Application of Organosilicon Compounds), Leningrad: Tsentr. Byuro Tekh. Inf., 1958, Issue 2, pp. 100–105 [in Russian].

    Google Scholar 

  18. Orlov, N.F., Organosilicophosphorus Compounds with Phoshorosiloxane Bond, in Khimiya i prakticheskoe primenenie kremniiorganicheskikh soedinenii. Trudy soveshchaniya (Proceedings of the Conference on the Chemistry and Practical Application of Organosilicon Compounds), Leningrad: Khimiya, 1968, pp. 94–111 [in Russian].

    Google Scholar 

  19. Grubber, V.N. and Klebanskii, A.L., Synthesis of Boron, Phosphorus, and Boron Phosphorus Siloxanes, in Kremniiorganicheskie materialy. Trudy soveshchaniya po khimii i prakticheskomu primeneniyu kremniiorganicheskikh soedinenii (Proceedings of the Conference on the Chemistry and Practical Application of Organosilicon Compounds), Leningrad: Nauka, 1971, pp. 162–163 [in Russian].

    Google Scholar 

  20. Pauling, L., The Nature of the Chemical Bond, Ithaca, NY (United States): Cornell University Press, 1939. Translated under the title Priroda khimicheskoi svyazi, Moscow: Inostrannaya Literatura, 1947.

    Google Scholar 

  21. Cottrell, T.L., The Strengths of Chemical Bonds, London, Butterworths Sci., 1954. Translated under the title Prochnost’ khimicheskikh svyazei, Moscow: Inostrannaya Literatura, 1956.

    Google Scholar 

  22. Batsanov, S.S., Elektrootritsatel’nost’ elementov i khimicheskaya svyaz’ (Electronegativities of the Elements and the Chemical Bonding), Novosibirsk: Akad. Nauk SSSR, 1962 [in Russian].

    Google Scholar 

  23. Zhabrev, V.A., Diffuzionnye protsessy v steklakh i stekloobrazuyushchikh rasplavakh (Diffusion Processes in Glasses and Glass-Forming Melts), St. Petersburg: Chemistry Research Institute, St. Petersburg State University, 1997 [in Russian].

    Google Scholar 

  24. Prigogine, I.R. and Stengers, I., Order out of Chaos: Man’s New Dialogue with Nature, London: Heinemann, 1984. Translated under the title Poryadok iz khaosa: Novyi dialog cheloveka s prirodoi, Moscow: Editorial URSS, 2001.

    Google Scholar 

  25. Chuppina, S.V., Synthesis of Chlorinated Polyorganosiloxanes as Binders for Heat-Resistant Protective Coatings, Extended Abstract of Cand. Sci. Dissertation, St. Petersburg: Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 2000 [in Russian].

    Google Scholar 

  26. Pankratova, E.T., Pavlova, S.V., and Shelikh, A.F., Chlorination of Poly(dimethylsiloxane) in the Presence of Oligoazines, Vysokomol. Soedin., Ser. B, 1987, vol. 29, no. 7, pp. 522–525.

    CAS  Google Scholar 

  27. Pavlova, S.V. and Pankratova, E.T., Synthesis and Properties of Chlorinated of Poly(dimethylphenylsiloxane), in Khimiya i prakticheskoe primenenie kremniiorganicheskikh soedinenii i materialov na ikh osnove. Tezisy dokladov VII soveshchaniya (Abstracts of Papers, VII Conference on the Chemistry and Practical Application of Organosilicon Compounds), Leningrad: Nauka, 1988, p. 93 [in Russian].

    Google Scholar 

  28. Pankratova, E.T. and Tikhomirov, B.I., Synthesis and Chemical Transformations of Polyazines with the Conjugated System, in Sintez i khimicheskie prevrashcheniya polimerov. Sbornik statei (Synthesis and Chemical Transformations of Polymers: A Collection of Articles), Leningrad: Leningrad State University, 1979, issue 2, pp. 46–65 [in Russian].

    Google Scholar 

  29. Pankratova, E.T., Politova, N.K., Shumovskaya, L.G., and Morachevskii, A.G., Complexation of Polyazine with a System of Conjugated Multiple Bonds with Molecular Bromine, Vysokomol. Soedin., Ser. A, 1981, vol. 23, no. 5, pp. 1107–1112.

    CAS  Google Scholar 

  30. Pankratova, E.T. and Chuppina, S.V., Composition for an Anticorrosive Coating, RF Patent 1808000, Byull. Izobret., 1993, no. 13, p. 220.

  31. Pankratova, E.T., Chuppina, S.V., Dubitskii, A.N., and Vorob’ev, N.D., Organosilicon Compositions “Unikron”, Lakokras. Mater. Ikh Primen., 1995, nos. 10–11, pp. 36–37.

  32. Chuppina, S.V., Synthesis of Chlorinated Polyorganosiloxanes as Binders for Heat-Resistant Protective Coatings, Cand. Sci. Dissertation, St. Petersburg: Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 2000 [in Russian].

    Google Scholar 

  33. Dneprovskii, A.S., Structural Factors Affecting the Reactivity in Free-Radical Chlorination, Zh. Vses. Khim. O-va. im. D. I. Mendeleeva, 1985, vol. 30, no. 3, pp. 315–324.

    CAS  Google Scholar 

  34. Tedder, J.M., The Importance of Polarity Bond Strength and Steric Effects in Determining the Site of Attack and the Rate of Free Radical Substitution in Aliphatic Compounds, Tetrahedron, 1982, vol. 38, pp. 313–329.

    Article  CAS  Google Scholar 

  35. March, J., Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, New York: McGraw-Hill, 1968. Translated under the title Organicheskaya khimiya, Moscow: Mir, 1987, vol. 1.

    Google Scholar 

  36. Dneprovskii, A.S., On the Structure of the Transition State in Free-Radical Substitution Reactions, in Reaktsionnaya sposobnost’ i mekhanizmy reaktsii organicheskikh soedinenii. Sbornik statei (Reactivity and Mechanisms of Reactions of Organic Compounds: A Collection of Articles), Leningrad: Leningrad State University, 1971, pp. 3–26 [in Russian].

    Google Scholar 

  37. Volynskii, A.L. and Bakeev, N.F., Strukturnaya samoorganizatsiya amorfnykh polimerov (Structural Self-Organization of Amorphous Polymers), Moscow: Fizmatlit, 2005 [in Russian].

    Google Scholar 

  38. Zhabrev, V.A., Efimenko, L.P., Baryshnikov, V.G., Polyakova, I.G., and Gumennikov, A.V., Synthesis of BaTiO3 Powders of Different Dispersities by the Exchange Reactions in Molten Salts, Fiz. Khim. Stekla, 2008, vol. 34, no. 1, pp. 116–123 [Glass Phys. Chem. (Engl. transl.), 2008, vol. 34, no. 1, pp. 91–96].

    Google Scholar 

  39. Stillinger, F., Equilibrium Theory of Pure Fused Salts, in Molten Salt Chemistry, Blander, M., Ed., New York, Wiley, 1964. Translated under the title Stroenie rasplavlennykh solei, Moscow: Mir, 1966.

    Google Scholar 

  40. Lamsden, J., Thermodynamics of Molten Mixtures of Alkali Metals Halides, Discuss. Faraday Soc., 1966, vol. 32, no. 6, pp. 138–146.

    Google Scholar 

  41. Sviridov, S.I., Investigation into Diffusion of Singly and Doubly Charged Cations in Silicate Glasses and Melts, Cand. Sci. Dissertation, St. Petersburg: Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 1983 [in Russian].

    Google Scholar 

  42. Serov, I.N., Bel’skaya, G.N., Margolin, V.I., and Potsar, N.A., Effect of Fractal-Matrix Resonators on the Properties of Thin Copper Films, Pis’ma Zh. Tekh. Fiz., 2002, vol. 28, no. 24, pp. 68–75 [Tech. Phys. Lett. (Engl. transl.), 2002, vol. 28, no. 12, pp. 1054–1057].

    Google Scholar 

  43. Serov, I.N., Bel’skaya, G.N., Margolin, V.I., Potsar, N.A., and Soltovskaya, I.A., Memory Effect Manifesting Itself upon Magnetron Sputtering of Copper in the Presence of “Airis” Fractal-Matrix Structurizers, in Temperaturoustoichivye funktsional’nye pokrytiya. Trudy XIX Vserossiiskogo soveshchaniya po temperaturoustoichivym funktsional’nym pokrytiyam (Heat-Resistant Functional Coatings (Proceedings of the XIX All-Russia Conference on High-Temperature Functional Coatings)), St. Petersburg: IKhS RAN, 2003, part II, pp. 81–85 [in Russian].

    Google Scholar 

  44. Serov, I.N. and Margolin, V.I., Fractal Matrix Topologies in Nanotechnology, in Temperaturoustoichivye funktsional’nye pokrytiya. Trudy XIX Vserossiiskogo soveshchaniya po temperaturoustoichivym funktsional’nym pokrytiyam (Heat-Resistant Functional Coatings (Proceedings of the XIX All-Russia Conference on High-Temperature Functional Coatings)), St. Petersburg: IKhS RAN, 2003, part II, pp. 85–91 [in Russian].

    Google Scholar 

  45. Serov, I.N., Zhabrev, V.A., and Margolin, V.I., Investigation into the Influence of Fractal-Matrix Structurizers on the Formation and Growth of Nanostructures, Fiz. Khim. Stekla, 2004, vol. 30, no. 1, pp. 45–71 [Glass Phys. Chem. (Engl. transl.), 2004, vol. 30, no. 1, pp. 3–50].

    Google Scholar 

  46. Chuppina, S.V., The Current State of the Art in Materials Science of Organosilicate Composites, Fiz. Khim. Stekla, 2006, vol. 32, no. 2, pp. 339–351 [Glass Phys. Chem. (Engl. transl.), 2006, vol. 32, no. 2, pp. 243–253].

    Google Scholar 

  47. Chuppina, S.V. and Mikhailidi, M.M., Application of Nanotechnologies to Organosilicate Materials, Fiz. Khim. Stekla, 2008, vol. 34, no. 5, pp. 785–788 [Glass Phys. Chem. (Engl. transl.), 2008, vol. 34, no. 5, pp. 599–602].

    Google Scholar 

  48. Magomedov, M.N., Size Dependences of Nanocrystal Properties, in Nanomineralogiya: Ul’tra- i mikrodispersnoe sostoyanie mineral’nogo veshchestva (Nanomineralogy: Ultradospersed and Microdospersed State of Minerals), St. Petersburg: Nauka, 2005, pp. 91–111 [in Russian].

    Google Scholar 

  49. Iler, R.K., The Chemistry of Silica, New York: Wiley, 1979. Translated under the title Khimiya kremnezema, Moscow: Mir, 1982.

    Google Scholar 

  50. Shilova, O.A., Formation of Hybrid Organic-Inorganic Materials by the Sol-Gel Method, Vopr. Khim. Khim. Tekhnol., 2002, no. 3, pp. 248–253.

  51. Shilova, O.A., Silicate and Hybrid Nanocomposite Materials Prepared by the Sol-Gel Method, Extended Abstract of Doctoral Dissertation, St. Petersburg: Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 2005 [in Russian].

    Google Scholar 

  52. Polyakov, M.V., Adsorption Properties of Silica Gel and Its Structure, Zh. Fiz. Khim., Ser. B, 1931, vol. 2, no. 6, pp. 799–805.

    Google Scholar 

  53. Balandin, A.A., Patrikeev, V.V., Sholin, A.F., Bychenkova, L.Ya., and Taber, A.M., Impartment of Selectivity to a Hydrogenation Catalyst with the Use of Specifically Formed Carrier—Silica Gel, Dokl. Akad. Nauk SSSR, 1966, vol. 160, no. 6, pp. 1362–1365.

    Google Scholar 

  54. Patrikeev, V.V., Sholin, A.F., and Nikiforova, N.A., Specifically Formed Silica Gels and Method for Separating Complex Mixtures of Organic Compounds, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1963, no. 6, pp. 1031–1035.

  55. Patrikeev, V.V., Balandin, A.A., Klabunovskii, E.N., Mardashev, Yu.S., and Maksimova, G.I., Selectivity of Adsorbent Formed in the Presence of Bacteria with Respect of Optical Isomers, Dokl. Akad. Nauk SSSR, 1960, vol. 132, no. 4, pp. 850–852.

    CAS  Google Scholar 

  56. Milovanov, V.P., Sinergetika i samoorganizatsiya: Ekonomika, Biofizika (Synergetics and Self-Organization: Economics and Biophysics), Moscow: KomKniga, 2005 [in Russian].

    Google Scholar 

  57. Shcherbakov, A.S., Samoorganizatsiya materii v nezhivoi prirode (Self-Organization of Matter in Inorganic Nature), Moscow: Moscow State University, 1990 [in Russian].

    Google Scholar 

  58. Vavilin, V.A., Self-Oscillations in Liquid-Phase Chemical Systems, Priroda (Moscow), 2000, no. 5, pp. 19–25.

  59. Rudenko, A.P., Teoriya samorazvitiya otkrytykh kataliticheskikh sistem (Theory of Self-Development of Open Catalytic Systems), Moscow: Moscow State University, 1969 [in Russian].

    Google Scholar 

  60. Shevchenko, V.Ya., Malochkin, O.V., Panov, V.S., and Barinov, S.M., Size Effect in Synthesis of Ultrafine Ytterbia-Stabilized Zirconia by the Sol-Gel Method, Dokl. Akad. Nauk, 1999, vol. 365, no. 5, pp. 649–652 [Dokl. Phys. Chem. (Engl. transl.), 1999, vol. 365, nos. 4–6, pp. 112–115].

    CAS  Google Scholar 

  61. Shevchenko, V.Ya., Madison, A.E., and Glushkova, V.B., Structure of Nanosized Zirconia Centaur Particles, Fiz. Khim. Stekla, 2001, vol. 27, no. 4, pp. 419–428 [Glass Phys. Chem. (Engl. transl.), 2001, vol., 27, no. 4, pp. 400–405].

    Google Scholar 

  62. Shevchenko, V.Ya., Khasanov, O.L., Yur’ev, G.S., and Pokholkov, Yu.P., Structural Features of Ultrafine Zirco nia as Probed by Synchrotron X-Ray Diffraction, Dokl. Akad. Nauk, 2001, vol. 377, no. 6, pp. 1–3 [Dokl. Phys. Chem. (Engl. transl.), 2001, vol. 377, no. 6, pp. 121–124].

    Google Scholar 

  63. Shevchenko, V.Ya., Madison, A.E., and Shudegov, V.E., Structural Features of Ultrafine Zirconia as Probed by Synchrotron X-Ray Diffraction, Fiz. Khim. Stekla, 2003, vol. 29, no. 6, pp. 807–814 [Glass Phys. Chem. (Engl. transl.), 2003, vol. 29, no. 6, pp. 577–582].

    Google Scholar 

  64. Pankratova, E.T., Tikhomirov, B.I., Khar’kova, A.M., and Fazul’zhanova, S.B., Chlorination of Polymers in the Presence of Polyazines with Conjugated System, Vysokomol. Soedin., Ser. A, 1976, vol. 18, no. 7, pp. 1586–1590.

    CAS  Google Scholar 

  65. Pankratova, E.T., Egorova, G.G., Novozhilova, S.Yu., and Mikhailova, V.S., Investigation into Specific Features of Chlorination of Poly(ethylene glycol) in the Presence of Oligoazines, Zh. Prikl. Khim. (St. Petersburg), 1994, no. 4, pp. 627–632.

  66. Pankratova, E.T., Politova, N.K., and Tikhomirov, B.I., Block Polyazine and Its Activating Ability in Chlorination of Poly(styrene), Vestn. Leningr. Univ., Ser. 4: Fiz., Khim., 1981, no. 6, pp. 116–117.

  67. Pankratova, E.T. and Lubnin, A.V., Chlorination of the Ethylene-Propylene Copolymer in the Presence of Oligoazines, Vysokomol. Soedin., Ser. B, 1986, vol. 28, no. 12, pp. 912–916.

    CAS  Google Scholar 

  68. Kazantseva, V.A., Merkulova, T.A., Pankratova, E.T., and Mikhlin, V.E., Chlorination of the Ethylene-Propylene-Ethylenenorbornene Ternary Copolymer in the Presence of Oligoazines, Vestn. Leningr. Univ., Ser. 4: Fiz. Khim., 1989, no. 4, pp. 109–112.

  69. Pankratova, E.T., Egorova, G.G., Shvendel’, A., Kazantseva, V.A., Kabina, T.S., and Sal’nikov, S.B., Chlorination of the Ethylene-Propylene-Dicyclopentadiene Ternary Copolymer, Vestn. Leningr. Univ., Ser. 4: Fiz. Khim., 1991, no. 2, pp. 70–75.

  70. Chernavskii, D.S., Sinergetika i informatsiya. Dinamicheskaya teoriya informatsii (Synergetics and Information: Dynamic Theory of Information), Moscow: Editorial URSS, 2004 [in Russian].

    Google Scholar 

  71. Zelenyi, L.M. and Milovanov, A.V., Fractal Topology and Strange Kinetics: From Percolation Theory to Problems in Cosmic Electrodynamics, Usp. Fiz. Nauk, 2004, vol. 174, no. 8, pp. 809–852 [Phys.—Usp. (Engl. transl.), 2004, vol. 47, no. 8, pp. 749–788].

    Article  Google Scholar 

  72. Roldugin, V.I., The Characteristics of Fractal Disperse Systems, Usp. Khim., 2003, vol. 72, no. 11, pp. 1027–1055.

    Google Scholar 

  73. Haken, H., Information and Self-Organization: A Macroscopic Approach to Complex Systems, Berlin: Springer, 1988. Translated under the title Informatsiya i samoorganizatsiya: makroskopicheskii podkhod k slozhnym sistemam, Moscow, Mir, 1991.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zhabrev.

Additional information

Original Russian Text © V.A. Zhabrev, S.V. Chuppina, V.I. Margolin, 2008, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhabrev, V.A., Chuppina, S.V. & Margolin, V.I. Self-organization as the rational choice of the direction of a chemical process. Glass Phys Chem 34, 641–659 (2008). https://doi.org/10.1134/S1087659608060011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659608060011

Keywords

Navigation