Skip to main content
Log in

Combinatorial modular design of the structures of spinel-type phases

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A review is presented of studies dealing with spinelloids, i.e., phases with spinel-type structures. Structures of one-dimensional and two-dimensional spinelloids, ordered solid solutions, polytypes, homologues, and hybrid spinelloids (phases with structures that can be constructed using fragments of a spinel or any other structure type) are analyzed in comparison with the spinel structure. The spinelloid structures are calculated using the developed combinatorial modular design method. It is revealed that the constructed modular spinelloid structures are in reasonable agreement with those described in the literature. The proposed crystal chemical description of the modular structures of spinelloids (composition, symmetry, relative sizes of unit cells, and the number of formula units in the unit cell) can be used to identify new phases with spinel-type structures. The results of the combinatorial modular design provide the basis for the controlled search for new spinelloids with a specified set of physical and physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Urusov, V.S., Teoreticheskaya kristallokhimiya (Theoretical Crystal Chemistry), Moscow: Moscow State University, 1987 [in Russian].

    Google Scholar 

  2. Urusov, V.S., Dubrovinskaya, N.A., and Dubrovinskii, L.S., Konstruirovanie veroyatnykh kristallicheskikh struktur mineralov (Design of Probable Crystal Structures of Minerals), Moscow: Moscow State University, 1990 [in Russian].

    Google Scholar 

  3. Urusov, V.S., Energeticheskaya kristallokhimiya (Energy Crystal Chemistry), Moscow: Nauka, 1975 [in Russian].

    Google Scholar 

  4. Belov, N.V., Ocherki po strukturnoi mineralogii (Essays on Structural Mineralogy), Moscow: Nedra, 1986 [in Russian].

    Google Scholar 

  5. Gusarov, S.A., Semin, E.G., and Gusarov, V.V., Fazovye diagrammy i termodinamika oksidnykh tverdykh rastvorov (Phase Diagrams and Thermodynamics of Oxide Solid Solutions), Leningrad: Leningrad State University, 1986 [in Russian].

    Google Scholar 

  6. Talanov, V.M., Energeticheskaya kristallokhimiya mnogopodreshetochnykh kristallov (Energy Crystal Chemistry of Multisublattice Crystals), Rostov-on-Don: Rostov State University, 1986 [in Russian].

    Google Scholar 

  7. Sakhnenko, V.P., Talanov, V.M., and Chechin, G.M., Vozmozhnye fazovye perekhody i atomnye smeshcheniya v kristallakh s prostranstvennoi gruppoi O 7h (Possible Phase Transitions and Atomic Displacements in Crystals with Space Group O 7h ), Available from VINITI, 1982, Moscow, no. 638 [in Russian].

  8. Sakhnenko, V.P., Talanov, V.M., and Chechin, G.M., Group-Theoretical Analysis of the Complete Condensate Formed upon Structural Phase Transitions, Fiz. Met. Metalloved., 1986, vol. 62, no. 5, pp. 847–856.

    CAS  Google Scholar 

  9. Sakhnenko, V.P., Talanov, V.M., and Chechin, G.M., Vozmozhnye fazovye perekhody i atomnye smeshcheniya v kristallakh s prostranstvennoi gruppoi O 7h . Analiz mekhanicheskogo i perestanovochnogo predstavlenii (Possible Phase Transitions and Atomic Displacements in Crystals with Space Group O 7h : An Analysis of the Mechanical and Permutational Representations), Available from VINITI, 1983, Moscow, no. 5379 [in Russian].

  10. Ivanov, V.V. and Talanov, V.M., Structural Combinatorial Modeling of One-Dimensional Compounds Including a Spinel Fragment, Izv. Akad. Nauk SSSR, Neorg. Mater., 1991, vol. 27, no. 11, pp. 2356–2360.

    CAS  Google Scholar 

  11. Ivanov, V.V. and Talanov, V.M., Structural Combinatorial Modeling of Two-Dimensional Compounds Including a Spinel Fragment, Izv. Akad. Nauk SSSR, Neorg. Mater., 1991, vol. 27, no. 11, pp. 2386–2390.

    CAS  Google Scholar 

  12. Ivanov, V.V. and Talanov, V.M., Structural Combinatorial Modeling of Ordered Spinelloids, Zh. Strukt. Khim., 1992, vol. 33, no. 3, pp. 137–140.

    CAS  Google Scholar 

  13. Ivanov, V.V. and Talanov, V.M., Modeling of Structures of Ordered (2: 1 Type) Solid Solutions Including a Spinel Structure Fragment, Zh. Strukt. Khim., 1992, vol. 33, no. 5, pp. 96–102.

    CAS  Google Scholar 

  14. Ivanov, V.V. and Talanov, V.M., Modeling of the Structure of the Ordered Spinel-Like Phases (of Type 2:1), Phys. Status Solidi A, 1990, vol. 122, no. 2, pp. K109–K112.

    Article  Google Scholar 

  15. Ivanov, V.V. and Talanov, V.M., Structural Combinatorial Modeling of Ordered (2: 1 Type) Solid Solutions ABB’O4 with Structures Including a Spinel Structure Fragment, Izv. Akad. Nauk SSSR, Neorg. Mater., 1992, vol. 28, no. 8, pp. 1720–1725.

    CAS  Google Scholar 

  16. Ivanov, V.V. and Talanov, V.M., Structural Problems of the Ordered Spinel-Like Phase CuIn5S8, in Abstracts of Papers of the International Conference “Aperiodic Crystals,” Lausanne, 1994, p. 23.

  17. Ivanov, V.V., Modeling of Homologous Series of Compounds Including Spinel Structure Fragments, Izv. Vyssh. Uchebn. Zaved., Severo-Kavkaz. Reg., Estestv. Nauk., 1996, no. 1, pp. 67–73.

  18. Ivanov, V.V. and Talanov, V.M., Structural Modeling of Compounds Including Spinel Structure Fragments from Helical Modules, Izv. Akad. Nauk SSSR, Neorg. Mater., 1992, vol. 28, no. 9, pp. 2022–2024.

    CAS  Google Scholar 

  19. Ivanov, V.V. and Talanov, V.M., World of Spinelloids, Izv. Vyssh. Uchebn. Zaved., Severo-Kavkaz. Reg., Estestv. Nauk., 1995, no. 2, pp. 38–43.

  20. Ivanov, V.V., Kombinatornoe modelirovanie veroyatnykh struktur neorganicheskikh veshchetsv (Combinatorial Modeling of Probable Structures of Inorganic Compounds), Rostov-on-Don: SKNTs VSh, 2003 [in Russian].

    Google Scholar 

  21. Sovremennaya kristallografiya. Tom 1. Simmetriya kristallov. Metody strukturnoi kristallografii (Modern Crystallography, vol. 1: Symmetry of Crystals: Methods of Structural Crystallography), Moscow: Nauka, 1980 [in Russian].

  22. Wells, A., Structural Inorganic Chemistry, Oxford (UK): Clarendon, 1984. Translated under the title Strukturnaya neorganicheskaya khimiya, Moscow: Mir, 1988.

    Google Scholar 

  23. Talanov, V.M., Theoretical Grounds of the Natural Classification of Structure Types, Kristallografiya, 1996, vol. 44, no. 6, pp. 979–997 [Crystallogr. Rep. (Engl. transl.), 1996, vol. 44, no. 6, pp. 929–946].

    Google Scholar 

  24. Akimoto, S., The System MgO-FeO-SiO2 at High Pressures and Temperatures—Phase Equilibria and Elastic Properties, Tectonophysics, 1972, vol. 13, pp. 161–187.

    Article  Google Scholar 

  25. Ringwood, A.E. and Major, A., Apparatus for Phase Transformation Studies at High Pressures and Temperatures, Phys. Earth Planet. Inter., 1968, vol. 1, pp. 164–168.

    Article  Google Scholar 

  26. Akimoto, S., High Pressure Synthesis of a “Modified” Spinel and Some Geophysical Implications, Phys. Earth Planet. Inter., 1970, vol. 3, pp. 189–195.

    Article  CAS  Google Scholar 

  27. Hazen, R.M. and Finger, L.W., Crystal Chemistry of Silicon-Oxygen Bonds at High Pressure: Implication for the Earth’s Mantle Mineralogy, Science (Washington, D.C., 1883–), 1978, vol. 201, pp. 1122–1123.

    Article  CAS  Google Scholar 

  28. Moore, P.B. and Smith, J.V., High Pressure Modification of Mg2SiO4: Crystal Structure and Crystallochemical and Geophysical Implications, Nature (London), 1969, vol. 221, pp. 653–655.

    Article  CAS  Google Scholar 

  29. Ringwood, A.E., Phase Transformations and the Constitution of the Mantle, Phys. Earth Planet. Inter., 1970, vol. 3, pp. 109–155.

    Article  CAS  Google Scholar 

  30. Ringwood, A.E., The Constitution of the Mantle. II: Future Data on the Olivine-Spinel Transition, Geochim. Cosmochim. Acta, 1958, vol. 15, pp. 18–29.

    Article  CAS  Google Scholar 

  31. Wang, C.G., Density and the Constitution of the Mantle, J. Geophys. Res., 1970, vol. 75, pp. 3264–3284.

    Article  Google Scholar 

  32. Ringwood, A.E., Phase Transformations and Their Bearing on the Constitution and Dynamics of the Mantle, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 2083–2110.

    Article  CAS  Google Scholar 

  33. Takeuchi, Y., Yamanaka, T., Haga, N., and Hirano, M., High-Temperature Crystallography of Olivines and Spinels, in Materials Science of the Earth’s Interior, Sunagava, I., Ed., Tokyo: TERRA, 1984, pp. 191–231.

    Google Scholar 

  34. Ringwood, A.E. and Major, A., Syntheses of Mg2SiO4-Fe2SiO4 Spinel Solid Solutions, Earth Planet. Sci. Lett., 1966, vol. 1, pp. 241–245.

    Article  CAS  Google Scholar 

  35. Akimoto, S. and Sato, Y., High-Pressure Transformation of Co2SiO4 Olivine and Some Geophysical Implications, Phys. Earth Planet. Inter., 1968, vol. 1, pp. 498–504.

    Article  CAS  Google Scholar 

  36. Morimoto, N., Akimoto, S., Koto, K., and Tokonami, M., Modified Spinel, Beta-Manganous Orthogermanate: Stability and Crystal Structure, Science (Washington, D.C., 1883–), 1969, vol. 165, no. 4, pp. 586–588.

    Article  CAS  Google Scholar 

  37. Morimoto, N., Tokonami, M., Koto, K., and Nakajima, S., Crystal Structures of the High Pressure Polymorphs of Mn2GeO4, Am. Mineral., 1972, vol. 57, pp. 62–75.

    CAS  Google Scholar 

  38. Moore, P.B. and Smith, J.V., Crystal Structure of β-Mg2SiO4: Crystal Chemical and Geophysical Implications, Phys. Earth Planet. Inter., 1970, vol. 3, pp. 166–177.

    Article  CAS  Google Scholar 

  39. Morimoto, N., Tokonami, M., Watanabe, M., and Koto, K., Crystal Structures of Three Polymorphs of Co2SiO4, Am. Mineral., 1974, vol. 59, pp. 475–485.

    CAS  Google Scholar 

  40. Tokonami, M., Morimoto, N., Akimoto, S., Syono, J., and Takeda, H., Stability Relations between Olivine, Spinel and Modified Spinel, Earth Planet. Sci. Lett., 1972, vol. 14, pp. 65–69.

    Article  CAS  Google Scholar 

  41. Ringwood, A.E., Olivine-Spinel Transformation in Cobalt Orthosilicate, Nature (London), 1963, vol. 198, pp. 79–80.

    Article  CAS  Google Scholar 

  42. Che-Bao, Ma and Sahl, K., Nickel Aluminosilicate, Phase III, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1975, vol. 31, pp. 2142–2143.

    Article  Google Scholar 

  43. Syono, Y., Tokonami, M., and Matsui, Y., Crystal Field Effect on the Olivine-Spinel Transformation, Phys. Earth Planet. Inter., 1971, vol. 4, pp. 347–352.

    Article  CAS  Google Scholar 

  44. Marumo, F. and Syono, Y., The Crystal Structure of Zn2SiO4-II, a High-Pressure Phase of Willemite, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1971, vol. 27, pp. 1868–1870.

    Article  CAS  Google Scholar 

  45. Morimoto, N., Akimoto, S., Koto, K., and Tokonami, M., Crystal Structures of High-Pressure Modifications of Mn2GeO4 and Co2SiO4, Phys. Earth Planet. Inter., 1970, vol. 3, pp. 161–165.

    Article  CAS  Google Scholar 

  46. Morimoto, N., Tokonami, M., Koto, K., and Nakajima, S., Crystal Structures of the High Pressure Polymorphs of Mn2GeO4, Am. Mineral., 1972, vol. 57, pp. 62–75.

    CAS  Google Scholar 

  47. Wadsley, A.D., Reid, A.F., and Ringwood, A.E., The High Pressure Form of Mn2GeO4, a Member of the Olivine Group, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1968, vol. 24, pp. 740–742.

    Article  CAS  Google Scholar 

  48. Yagi, T., Marumo, F., and Akimoto, S.I., Crystal Structures of Spinel Polymorph of Fe2SiO4 and Ni2SiO4, Am. Mineral., 1974, vol. 59, pp. 486–490.

    CAS  Google Scholar 

  49. Finger, L.W., Hazen, R.M., and Yagi, T., High-Pressure Crystal Structures of Spinel Polymorph of Fe2SiO4 and Ni2SiO4, Carnegie Inst. Wash. Year Book., 1977, vol. 76, pp. 504–505.

    Google Scholar 

  50. Finger, L.W., Hazen, R.M., and Yagi, T., Crystal Structures and Electron Densities of Nickel and Iron Silicate Spinels at Elevated Temperature and Pressure, Am. Mineral., 1979, vol. 64, pp. 1002–1009.

    CAS  Google Scholar 

  51. Dachille, F. and Roy, R., High Pressure Studies of the System Mg2GeO4-Mg2SiO4 with Special Reference to the Olivine-Spinel Transition, Am. J. Sci., 1960, vol. 258, pp. 225–246.

    CAS  Google Scholar 

  52. Horiuchi, H. and Sawamoto, H., β-Mg2SiO4: Single-Crystal X-Ray Diffraction Study, Am. Mineral., 1981, vol. 66, pp. 568–575.

    CAS  Google Scholar 

  53. Suito, K., Phase Transformations of Pure Mg2SiO4 into a Spinel Structure under High Pressures and Temperatures, J. Phys. Earth, 1972, vol. 20, pp. 225–243.

    CAS  Google Scholar 

  54. Suito, K. and Kawai, N., Studies of Phase Equilibrium in Mg2SiO4 up to Pressure Higher Than 20 GPa, Rev. High-Pressure Sci. Technol., 1979, vol. 2, pp. 53–59.

    CAS  Google Scholar 

  55. Ringwood, A.E. and Major, A., Phase Transformation in the Mantle, Earth Planet. Sci. Lett., 1969, vol. 5, pp. 401–412.

    Article  CAS  Google Scholar 

  56. Ringwood, A.E. and Major, A., The System Mg2SiO4-Fe2SiO4 at High Pressures and Temperatures, Phys. Earth Planet. Inter., 1970, vol. 3, pp. 89–108.

    Article  CAS  Google Scholar 

  57. Akimoto, S. and Fujisawa, H., Olivine-Spinel Solid Solution Equilibria in the System Mg2SiO4-Fe2SiO4, J. Geophys. Res., 1968, vol. 73, pp. 1467–1479.

    Article  CAS  Google Scholar 

  58. Mao, H.K., Takahashi, T., Bassett, W.A., Weaver, J.S., and Akimoto, S., Effect of Pressure and Temperature on the Molar Volumes of Wüstite and of Three (Fe,Mg)2SiO4 Spinel Solid Solutions, J. Geophys. Res., 1969, vol. 74, pp. 1061–1069.

    Article  CAS  Google Scholar 

  59. Hyde, B.G., White, T.J., O’Keeffe, M., and Johnson, A.W.S., Structures Related to Those of Spinel and the Beta-Phase, and a Possible Mechanism for the Transformation Olivine-Spinel, Z. Kristallogr., 1982, vol. 160, no. 1, pp. 53–62.

    CAS  Google Scholar 

  60. Price, G.D., Putnis, A., Argell, S.O., and Smith, D.G.W., Wadsleyite, Natural β-(Mg,Fe)2SiO4 from the Peace River Meteorite, Can. Mineral., 1983, vol. 21, pp. 29–35.

    CAS  Google Scholar 

  61. Guyot, F., Gwanmesia, G.D., and Liebermann, R.C., An Olivine to Beta Phase Transformation Mechanism in Mg2SiO4, Geophys. Rev. Lett., 1991, vol. 18, pp. 89–92.

    Article  Google Scholar 

  62. Fei, Y., Mao, H.K., Shu, J., Parthasarathy, G., Basset, W.A., and Ko, J., Simultaneous High P-T X-Ray Diffraction Study of β-(Mg,Fe)2SiO4 to 26 GPa and 900 K, J. Geophys. Res., 1992, vol. 97, pp. 4489–4495.

    Article  CAS  Google Scholar 

  63. Brearley, A.J. and Rubie, D.C., Transformation Mechanisms of San Carlos Olivine to (Mg,Fe)2SiO4 β-Phase under Subduction Zone Conditions, Phys. Earth Planet. Inter., 1994, vol. 86, pp. 45–67.

    Article  CAS  Google Scholar 

  64. Meng, Y., Weidner, D.J., Gwanmesia, G.D., Liebermann, R.C., Vaughan, M.T., Wang, Y., Leinenweber, K., Pacalo, R.E., Yeganeb-Haeri, A., and Zhao, Y., In Situ High P-T X-Ray Diffraction Studies of Three Polymorphs (α,β,γ) of Mg2SiO4, J. Geophys. Res., 1993, vol. 98, pp. 22199–22207.

    Article  CAS  Google Scholar 

  65. Brearley, A.J., Rubie, D.C., and Ito, E., Mechanisms of the Transformations between the α, β, and γ Polymorphs of Mg2SiO4 at 15 GPa, Phys. Chem. Miner., 1992, vol. 18, pp. 343–358.

    Article  CAS  Google Scholar 

  66. Rubie, D.C. and Brearley, A.J., Phase Transitions between β and γ (Mg,Fe)2SiO4 in the Earth’s Mantle: Mechanisms and Reological Implications, Science (Washington, D.C., 1883–), 1994, vol. 264, pp. 1445–1448.

    Article  CAS  Google Scholar 

  67. Reynard, B., Takir, F., Guyot, F., Gwanmesia, G.D., Liebermann, R.C., and Gillet, P., High-Temperature Raman Spectroscopic and X-Ray Diffraction Study of β-Mg2SiO4: Insights into Its High-Temperature Thermodynamic Properties and the β-to α-Phase Transformation Mechanism and Kinetics, Am. Mineral., 1996, vol. 81, pp. 585–594.

    CAS  Google Scholar 

  68. Ma, C.-B., New Orthorhombic Phases on the Join NiAl2O4 (Spinel Analog)-Ni2SiO4 (Olivine Analog): Stability and Implications to Mantle Mineralogy, Contrib. Mineral. Petrol., 1974, vol. 45, pp. 257–279.

    Article  CAS  Google Scholar 

  69. Ma, C.-B., Sahl, K., and Tillmanns, E., Nickel Aluminosilicate, Phase I, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1975, vol. 31, pp. 2137–2139.

    Article  Google Scholar 

  70. Ma, C.-B. and Tillmanns, E., Nickel Aluminosilicate, Phase II, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1975, vol. 31, pp. 2139–2141.

    Article  Google Scholar 

  71. Horioka, K., Takahashi, K., Morimoto, N., Horiuchi, H., Akaogi, M., and Akimoto, S., Structure of Nickel Alumosilicate (Phase IV): A High-Pressure Phase Related to Spinel, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1981, vol. 37, pp. 635–638.

    Article  Google Scholar 

  72. Horioka, K., Nishiguchi, M., Morimoto, N., Horiuchi, H., Akaogi, M., and Akimoto, S., Structure of Nickel Alumosilicate (Phase V): A High-Pressure Phase Related to Spinel, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1981, vol. 37, pp. 638–640.

    Article  Google Scholar 

  73. Akaogi, M., Akimoto, S., Horioka, K., Takahashi, K., and Horiuchi, H., The System NiAl2O4-Ni2SiO4 at High Pressures and Temperatures: Spinelloids with Spinel-Related Structures, J. Solid State Chem., 1982, vol. 44, pp. 257–267.

    Article  CAS  Google Scholar 

  74. Horiuchi, H., Horioka, K., and Morimoto, N., Spinelloids: A Systematics of Spinel-Related Structures Obtained under High-Pressure Conditions, J. Miner. Soc. Jpn., 1980, no. 2, pp. 253–264.

  75. Horiuchi, H., Akaogi, M., and Sawamoto, H., Crystal Structure Studies on Spinel-Related Phases, Spinelloids: Implications to Olivine-Spinel Phase Transformations, Adv. Earth Planet. Sci., 1980, vol. 12, pp. 391–398.

    Google Scholar 

  76. Akaogi, M. and Navrotsky, A., Calorimetric Study of the Stability of Spinelloids in the System NiAl2O4-Ni2SiO4, Phys. Chem. Miner., 1984, vol. 10, pp. 166–172.

    Article  CAS  Google Scholar 

  77. Davies, P.K. and Akaogi, M., Phase Integrowths in Spinelloids, Nature (London), 1983, vol. 305, pp. 788–790.

    Article  CAS  Google Scholar 

  78. Price, G.D., Polytypism and the Factors Determining the Stability of Spinelloids Structures, Phys. Chem. Miner., 1983, vol. 10, pp. 77–83.

    Article  CAS  Google Scholar 

  79. Moore, P.B., Manganostibite: A Novel Cubic Close-Packed Structure Type, Am. Mineral., 1970, vol. 55, pp. 1489–1499.

    CAS  Google Scholar 

  80. Barbier, J. and Hyde, B.G., Spinelloid Phases in the System MgGa2O4-Mg2GeO4, Phys. Chem. Miner., 1986, vol. 13, pp. 382–392.

    CAS  Google Scholar 

  81. Barbier, J., New Spinelloid Phases in the MgGa2O4-Mg2GeO4 and MgFe2O4-Mg2GeO4 Systems, Eur. J. Mineral., 1989, vol. 1, pp. 39–46.

    CAS  Google Scholar 

  82. Hammond, R. and Barbier, J., Structures of the Nickel Gallosilicate Spinelloids, Phys. Chem. Miner., 1991, vol. 18, pp. 184–190.

    Article  CAS  Google Scholar 

  83. Leinenweber, K. and Navrotsky, A., Thermochemistry of Phases in the System Mg2GaO4-MgGe2O4, Phys. Chem. Miner., 1989, vol. 16, pp. 497–502.

    CAS  Google Scholar 

  84. Millard, R.L., Peterson, R.C., and Swainson, L.P., Synthetic MgGa2O4-Mg2GeO4 Spinel Solid Solution and β-Mg3Ga2GeO8: Chemistry, Crystal Structures, Cation Ordering, and Comparison to Mg2GeO4 Olivine, Phys. Chem. Miner., 2000, vol. 27, pp. 179–193.

    Article  CAS  Google Scholar 

  85. Barbier, J. and Hyde, B.G., Structure of Sapphirine: Its Relation to the Spinel, Clinopyroxene and β-Gallia Structures, Acta Crystallogr., Sect. B: Struct. Sci., 1988, vol. 44, pp. 373–377.

    Article  Google Scholar 

  86. Hammond, R. and Barbier, J., Structures of the Nickel Gallosilicate Spinelloids, Acta Crystallogr., Sect. B: Struct. Sci., 1993, vol. 49, pp. 204–213.

    Article  Google Scholar 

  87. Sawamoto, H. and Horiuchi, H., β-(Mg0.9Fe0.1)2SiO4 Single Crystal Structure, Cation Distribution, and Properties of Coordination Polyhedra, Phys. Chem. Miner., 1990, vol. 17, pp. 293–300.

    Article  CAS  Google Scholar 

  88. Finger, L.W., Hazen, R.M., Zhang, J., Ko, J., and Navrotsky, A., The Effect of Fe on the Crystal Structure of Wadsleite β-(Mg1 − x Fex)2SiO4, 0.00 ≤ x ≤ 0.40, Phys. Chem. Miner., 1992, vol. 19, pp. 361–368.

    Google Scholar 

  89. Smyth, J.R. and Kawamoto, T., Wadsleyite II: A New High Pressure Hydrous Phase in the Peridotite-H2O System, Earth Planet. Sci. Lett., 1997, vol. 146, pp. E9–E16.

    Article  CAS  Google Scholar 

  90. Smyth, J.R., Kawamoto, T., Jacobsen, S.D., Swope, R.J., and Hervig, R.L., Crystal Structure of Monoclinic Hydrous Wadsleyite [β-(Mg,Fe)2SiO4], Am. Mineral., 1997, vol. 82, pp. 270–275.

    CAS  Google Scholar 

  91. Barbier, J., (Ni,Mg)4n + 6Ge2n + 1)8(n + 1), a New Structural Family Related to Olivine and Spinel, Acta Crystallogr., Sect. B: Struct. Sci., 1987, vol. 43, pp. 422–429.

    Article  Google Scholar 

  92. Ross, C.R., Armbruster, T., and Canil, D., Crystal Structure Refinement of a Spinelloid in the System Fe2O3-Fe2SiO4, Am. Mineral., 1992, vol. 77, pp. 507–511.

    CAS  Google Scholar 

  93. Angel, R.J. and Woodland, A.B., Crystal Structure of Spinelloid II in the System Fe3O4-Fe2SiO4, Eur. J. Mineral., 1998, vol. 10, pp. 607–611.

    CAS  Google Scholar 

  94. Woodland, A.B. and Angel, R.J., Crystal Structure of a New Spinelloid with the Wadsleyite Structure in the System Fe2SiO4-Fe3O4 and Implications for the Earth’s Mantle, Am. Mineral., 1998, vol. 83, pp. 404–408.

    CAS  Google Scholar 

  95. Ohtaka, O., Tobe, H., and Yamanaka, T., Phase Equilibria for the Fe2SiO4-Fe3O4 System under High Pressure, Phys. Chem. Miner., 1997, vol. 24, pp. 555–560.

    Article  CAS  Google Scholar 

  96. Wang, Y.D., Ye, H.Q., Ximen, L.L., and Kuo, K.H., A HREM Study of the Intergrowth of Magnetite and Coulsonite, Acta Cryst. Sect. A: Found. Crystallogr., 1989, vol. 45, pp. 264–268.

    Article  Google Scholar 

  97. Rooymans, C., Structural Investigations on Some Oxides and Other Chalcogenides at Normal and Very High Pressures, Amsterdam: North-Holland, 1967. Translated under the Title Strukturnye issledovaniya nekotorykh okislov i drugikh khal’kogenidov pri normal’nykh i vysokikh davleniyakh Moscow: Mir, 1969.

    Google Scholar 

  98. Horiuchi, H., Morimoto, N., and Yamaoka, S., The Crystal Structure of Li2WO4II: A Structure Related to Spinel, J. Solid State Chem., 1979, vol. 30, no. 2, pp. 129–135.

    Article  CAS  Google Scholar 

  99. Horiuchi, H., Morimoto, N., and Yamaoka, S., The Crystal Structure of Li2WO4(IV) and Its Relation to the Wolframite-Type Structure, J. Solid State Chem., 1980, vol. 33, no. 2, pp. 115–119.

    Article  CAS  Google Scholar 

  100. Sharma, R. and Lundberg, M., Structure of the Intermediate Phase, Li2.09W0.91Nb0.09O4, in the Li2WO4-Li3NbO4 System, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1985, vol. 41, pp. 173–177.

    Article  Google Scholar 

  101. Bertaut, E.F. and Patrat, G., Structure de LiGaTiO4, nouveau type d’ordre dans les spinelles, Bull. Soc. Fr. Mineral. Cristallogr., 1965, vol. 88, no. 4, pp. 586–589.

    CAS  Google Scholar 

  102. Rulmont, A., Tarte, P., Foumakoye, G., Fransolet, A.M., and Choisnet, J., The Disordered Spinel NaAgMoO4 and Its High-Temperature, Ordered Orthorhombic Polymorph, J. Solid State Chem., 1988, vol. 76, pp. 18–25.

    Article  CAS  Google Scholar 

  103. Tarte, P., Cahay, R., Preudhomme, J., Hervieu, M., Choisnet, J., and Raveau, B., Hexagonal-Spinel Transitions in Antimonates Li2Cr3 − x M IIIx SbO8 (M III = Al, Fe, Ga), J. Solid State Chem., 1982, vol. 44, pp. 282–289.

    Article  CAS  Google Scholar 

  104. Tarte, P. and Preudhomme, J., Studies of Spinels: VI. Antimonates M II4 M IIISbO8, a New Large Family of Spinels Presenting Order-Disorder Transitions, J. Solid State Chem., 1979, vol. 29, pp. 273–284.

    Article  CAS  Google Scholar 

  105. Preudhomme, J., Tarte, P., Kenons, R., et al., Studies of Spinels: VIII. Synthesis and Structural Study of New Antimonates M II5 M III3 SbO12 by X-Ray Diffraction and Mössbauer Spectroscopy, Bull. Acad. Roy. Belg., 1980, vol. 66, no. 5, pp. 776–791.

    CAS  Google Scholar 

  106. Preudhomme, J. and Tarte, P., Studies of Spinels: VII. Order-Disorder Transition in the Inverse Germanate Spinels Zn2x(Co,Ni)xGeO4 (x = 1), J. Solid State Chem., 1980, vol. 35, pp. 272–277.

    Article  CAS  Google Scholar 

  107. Tarte, P. and Preudhomme, J., Infrared Studies of Spinels: V. Lithium Spinels of the Type LiXY 4O8, Spectrochim. Acta, Part A, 1973, vol. 29, pp. 1301–1312.

    Article  CAS  Google Scholar 

  108. Nogues, M. and Poix, P., Effect Jahn-Teller cooperatif dans le systeme Mn3O4-Mn2SnO4, J. Solid State Chem., 1974, vol. 9, pp. 330–335.

    Article  CAS  Google Scholar 

  109. Nogues, M. and Poix, P., Effect Jahn-Teller cooperatif dans le systeme ZnMn2O4-Zn2SnO4, Ann. Chim., 1972, vol. 7, pp. 301–314.

    CAS  Google Scholar 

  110. Manolikas, C., De Ridder, R., Van Landutt, J., and Amelinckx, S., Electron Diffraction and Electron Microscopic Study of the Sulfospinel CuIn5S8, Phys. Status Solidi A, 1980, vol. 52, pp. 621–632.

    Google Scholar 

  111. Berezhnoi, A.S. and Gul’ko, N.V., Investigation of the MgO-Al2O3-TiO2 System, Ukr. Khim. Zh., 1955, vol. 21, no. 2, pp. 158–166.

    CAS  Google Scholar 

  112. McKic, D., The Högbomite Polytypes, Mineral. Mag., 1963, vol. 33, no. 262, pp. 563–580.

    Article  Google Scholar 

  113. Belov, N.V., Struktura ionnykh kristallov i metallicheskikh faz (Structure of Ionic Crystals and Metal Phases), Moscow: Akad. Nauk SSSR, 1947 [in Russian].

    Google Scholar 

  114. Penkalya, T., Ocherki kristallokhimii (Essays on Crystal Chemistry), Frank-Kamenetskii, V.A, Ed., Leningrad: Khimiya, 1974 [in Russian].

    Google Scholar 

  115. Barbier, J. and Hyde, B.G., Mg7Ga2GeO12, a New Spinelloid-Related Compound, and the Structural Relation between Spinelloids (Including Spinel) and the β-Ga2O3 and NaCl Types, Acta Crystallogr., Sect. B: Struct. Sci., 1987, vol. 43, pp. 34–40.

    Article  Google Scholar 

  116. Belov, N.V., Godovikov, A.A., and Bakakin, V.V., Ocherki po teoreticheskoi mineralogii (Essays on Theoretical Mineralogy), Moscow: Nauka, 1982 [in Russian].

    Google Scholar 

  117. Hunt, E., Artificial Intellegence, New York: Academic, 1975. Translated under the Title Iskusstvennyi intellekt, Moscow: Mir, 1978.

    Google Scholar 

  118. Aslanov, L.A., Simmetriya mezhatomnykh vzaimodeistvii (Symmetry of Interatomic Interactions), Moscow: Moscow State University, 1988 [in Russian].

    Google Scholar 

  119. Blatov, V.A., Pol’kin, V.A., and Serezhkin, V.N., Polymorphism of elementary substances and the principle of uniformity, Kristallografiya, 1994, vol. 39, no. 3, pp. 457–463 [Crystallogr. Rep. (Engl. transl.), 1994, vol. 39, no. 3, pp. 402–408].

    CAS  Google Scholar 

  120. Ivanov, V.V. and Talanov, V.M., Strukturno-kombinatornoe modelirovanie shpineloidov. 1. Odnomernye shpineloidy (Structural Combinatorial Modeling of Spinelloids: I. One-Dimensional Spinelloids), Available from VINITI, 1989, Novocherkassk, no. 2497-V90 [in Russian].

  121. Ivanov, V.V. and Talanov, V.M., Strukturno-kombinatoroe modelirovanie shpineloidov. 2. Dvumernye shpineloidy (Structural Combinatorial Modeling of Spinelloids: II. Two-Dimensional Spinelloids), Available from VINITI, 1989, Novocherkassk, no. 2498-V90 [in Russian].

  122. Donika, F.G., Radautsan, S.I., Semiletov, S.A., and Mustya, I.G., Kristallicheskie struktury neorganicheskikh soedinenii (Crystal Structures of Inorganic compounds), Chisinau: Shtinitsa, 1974, pp. 143–155 [in Russian].

    Google Scholar 

  123. Ivanov, V.V. and Talanov, V.M., Strukturno-kombinatornoe modelirovanie shpineloidov. 3. Uporyadochennye tverdye rastvory (Structural Combinatorial Modeling of Spinelloids: III. Ordered Solid Solutions), Available from VINITI, 1989, Novocherkassk, no. 4672-V90 [in Russian].

  124. Ivanov, V.V., Ereiskaya, G.P., and Lyutsedarskii, V.A., Prediction of One-Dimensional Homologous Series of Metal Oxides with Octahedral Structures, Izv. Akad. Nauk SSSR, Neorg. Mater., 1990, vol. 26, no. 4, pp. 781–784.

    CAS  Google Scholar 

  125. Ivanov, V.V. and Ereiskaya, G.P., Structural Combinatorial Analysis of One-Dimensional Homologous Series of Transition Metal Oxides with Octahedral Structures, Izv. Akad. Nauk SSSR, Neorg. Mater., 1991, vol. 27, no. 12, pp. 2690–2691.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Talanov.

Additional information

Original Russian Text © V.V. Ivanov, V.M. Talanov, 2008, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, V.V., Talanov, V.M. Combinatorial modular design of the structures of spinel-type phases. Glass Phys Chem 34, 401–435 (2008). https://doi.org/10.1134/S1087659608040093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659608040093

Keywords

Navigation