Skip to main content
Log in

Characterization of glassy materials for immobilization of radioactive waste with a high iron oxide content

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The influence of the content of oxides in the simulated high-level wastes on the phase composition, the structure, and the water resistance of borosilicate-based glassy materials for immobilization is investigated. An increase in the waste oxide content from 45 to 65 wt % leads to an increase in the fraction of the crystalline phase of the magnetite-type spinel from 3–5 to 20–22 vol %. The glassy materials are characterized by a low leaching rate of the main waste components in water. A considerable increase in the leaching rate of sodium ions and, to a lesser extent, aluminum and uranium ions is observed for the glassy materials containing waste oxides at a content of 55 wt % and more due to the depolymerization of the structural glass network. Under the same conditions, the leaching rate of iron does not increase noticeably because of the high resistance of the iron-containing spinel to water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hench, L.L., Clark, D.E., and Campbell, J., High Level Waste Immobilization Forms, Nucl. Chem. Waste Manag., 1984, vol. 5, pp. 149–173.

    Article  CAS  Google Scholar 

  2. Fosfatnye stekla s radioaktivnymi otkhodami (Phosphate Glasses with Radioactive Wastes), Vashman, A.A., and Polyakov, A.S., Eds., Moscow: TsNIIAtominform, 1997 [in Russian].

    Google Scholar 

  3. Chemical Durability and Relater Properties of Solidified High-Level Waste Forms, Tech. Reports Series, Vienna: IAEA, 1985, no. 257.

  4. Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., and Weinberg, M.C., Radiation Effects in Glasses Used for Immobilization of High Level Waste and Plutonium Disposition, J. Mater. Res., 1997, vol. 12, pp. 1946–1975.

    Article  Google Scholar 

  5. Marra, S.L., O’Driscoll, R.J., Fellinger, T.L., Ray, J.W., Patel, P.M., and Occhipinti, J.E., DWPF Vitrification—Transition to the Second Batch of HLW Radioactive Sludge, in Proceedings of the International Conference “Waste Management’ 99,” Tucson, AZ, United States, 1999, Tucson, 1999, CD-ROM, ID 48-5.

  6. Petkus, L.L., Paul, J., Valenti, P.J., Houston, H., and May, J.A., Complete History of the High Level Waste Plant at the West Valley Demonstration Project, in Proceedings of the International Conference “Waste Management ′03,” Tucson, AZ, United States, 2003, Tucson, 2003, CD-ROM.

  7. Marra, J.C., Proper Refractories Essential for Nuclear Waste Vitrification, Glass Res., 1998, vol. 7, pp. 9–10.

    CAS  Google Scholar 

  8. Do Quang, R., Petitjean, V., Hollebecque, F., Pinet, O., Flament, T., and Prod’homme, A., Vitrification of HLW Produced by Uranium / Molybdenum Fuel Reprocessing in Cogema’s Cold Crucible Melter, in Proceedings of the International Conference “Waste Management’ 03,” Tucson, AZ, United States, 2003, Tucson, 2003, CD-ROM.

  9. Dmitriev, S.A. and Stefanovsky, S.V., Obrashchenie s radioaktivnymi otkhodami (Radioactive-Waste Management), Moscow: Mendeleev Russian University of Chemical Technology, 2000 [in Russian].

    Google Scholar 

  10. Stegen, G.E., Lambert, S.L., Goetghebeur, S., and Kalousdian, Ph., Simplified Melter System Proposed for Vitrification of INEEL High-Level Waste, in Proceedings of the International Conference “Waste Management’ 98,” Tucson, AZ, United States, 1998, Tucson, 1998, CD-ROM, ID 27-08.

  11. Nicaise, E., Veyer, C., Goetghebeur, S., Hrma, P., Morrey, E.V., Smith, G.L., Vienna, J.D., Dissossoy, J.L., Ladirat, C., Ledoux, A., and Puyou, M., Hanford High Level Waste Processing in a Cold Crucible Melter: Test Results Obtained in the Framework of the TWRS-P Contract, in Proceedings of the International Conference “Waste Management’ 99,” Tucson, AZ, United States, 1999, Tucson, 1999, CD-ROM.

  12. Roach, J.A. and Richardson, J.G., Technical Development of New Concepts for Operation and Control of Cold Crucible Induction Melters for Vitrification of Radioactive Waste, in Proceedings of the International Conference “Waste Management’ 06,” Tucson, AZ, United States, 2006, Tucson, 2006, Cd-ROM.

  13. Kobelev, A.P., Stefanovsky, S.V., Knyasev, O.A., Lashchenova, T.N., Marra, J.C., Holtzscheiter, E.W., and Herman, C.C., Induction Heated Cold Crucible Melter Testing with Troublesome High Level Waste Components, in Proceedings of the 107th American Ceramic Society Meeting, Baltimore, MD, United States, 2005, Baltimore, 2005, pp. 159–169.

  14. Kobelev, A.P., Stefanovsky, S.V., Knyazev, O.A., Lashchenova, T.N., Holtzscheiter, E.W., and Marra, J.C., Cold Crucible Vitrification of Defense Waste Surrogate and Vitrified Product Characterization, Mat. Res. Soc. Symp. Proc., 2006, vol. 932, pp. 353–360.

    CAS  Google Scholar 

  15. Kobelev, A.P., Stefanovsky, S.V., Knyazev, O.A., Lashchenova, T.N., Ptashkin, A.G., Polkanov, M.A., Holtzscheiter, E.W., and Marra, J.C., Results of a 50% Waste Loading Vitrification Test Using the Cold Crucible Melter for Savannah River Site, in Proceedings of the Conference “Waste Management’ 06,” Tucson, AZ, United States, 2006, Tucson, 2006, CD-ROM, ID 6127.

  16. GOST (State Standard) R 52126-2003: Radioactive Wastes. Determination of Chemical Durability of Solidified High-Level Wastes by Long-Term Leaching Technique, 2003.

  17. Nakamoto, K., Infrared Spectra of Inorganic and Coordination Compounds, New York: Willey, 1963. Translated under the title Infrakrasnye spektry neorganicheskikh i koordinatsionnykh soedinenii, Moscow: Mir, 1966.

    Google Scholar 

  18. Wong, J. and Angell, C.A., Glass Structure by Spectroscopy, New York: Marcel Dekker, 1976.

    Google Scholar 

  19. Plyusnina, I.I., Infrakrasnye spektry mineralov (Infrared Spectra of Minerals), Moscow: Moscow State University, 1977 [in Russian].

    Google Scholar 

  20. Chekhovskii, V.G., Interpretation of IR Spectra of Alkali Borate Glasses, Fiz. Khim. Stekla, 1985, vol. 11, no. 1, pp. 24–32.

    CAS  Google Scholar 

  21. Saad, S., Obbade, S., Yagoubi, S., and Abraham, F., Synthesis, Crystal Structure Determination, Infrared and Electrical Characterization of the New Cesium Uranyl Niobate Cs9U8Nb5O41, in Proceedings of XXXVI J. Des Actinides, Oxford, 2006, p-35.

  22. Stefanovsky, S.V., Nikonov, B.S., and Marra, J.C., Characterization of the Glass-Ceramic Material Prepared upon Vitrification of an Iron-Containing Surrogate of High-Level Wastes in a Cold Crucible, Fiz. Khim. Stekla, 2007, vol. 33, no. 6, pp. 798–810 [Glass Phys. Chem. (Engl. transl.), 2007, vol. 33, no. 8, pp. 576–586].

    Google Scholar 

  23. Veal, B.W., Mundy, J.N., and Lam, D.J., Actinides in Silicate Glasses, in Handbook of the Physics and Chemistry of the Actinides, Freeman, A.J. and Lander, G.H., Eds., Amsterdam: Elsevier, 1987, vol. 5, pp. 271–309.

    Google Scholar 

  24. Hess, N.J., Weber, W.J., and Conradson, S.D., U and Pu LIII XAFS of Pu-Doped Glass and Ceramic Waste Forms, J. Alloys Compd., 1998, vols. 271–273, pp. 240–243.

    Article  Google Scholar 

  25. Aloy, A.S., Trofimenko, A.V., Iskhakova, O.A., and Jardine, L.J., Uranium Redox States in Borosilicate Compositions, Mater. Res. Soc. Symp. Proc., 2004, vol. 824, pp. 345–350.

    CAS  Google Scholar 

  26. Stefanovsky, S., Shiryaev, A., Zubavitchus, I., and Marra, J., XANES/EXAFS of U LIII Edge in Borosilicate High-Ferrous Nuclear Waste Glasses, Proceedings of XXXVII J. des Actinides, Sesimbra, 2007, pp. 61–62.

  27. Semin, V.A., Lashchenova, T.N., and Perfil’ev, Yu.D., Investigation of the Ratio between Iron(III) and Iron(II) in Borosilicate Glass-Ceramic Matrices, in Tezisy dokladov V Rossiiskoi konferentsii po radiokhimii “Radiokhimiya-2006” (Abstracts of Papers, V Russian Conference on Radiochemistry “Radiochemistry 2006”) Dubna, 2006, p. 243.

  28. Sobolev, I.A., Ozhovan, M.I., Shcherbatova, T.D., and Batyukhnova, O.G., Stekla dlya radioaktivnykh otkhodov (Glasses for Radioactive Wastes), Moscow: Energoatomizdat, 1999 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stefanovsky.

Additional information

Original Russian Text © S.V. Stefanovsky, B.S. Nikonov, J.C. Marra, 2008, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanovsky, S.V., Nikonov, B.S. & Marra, J.C. Characterization of glassy materials for immobilization of radioactive waste with a high iron oxide content. Glass Phys Chem 34, 292–299 (2008). https://doi.org/10.1134/S1087659608030097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659608030097

Keywords

Navigation