Skip to main content
Log in

Electrical conductivity and the nature of charge carriers in glasses of the Tl2O-B2O3 system

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The concentration dependence of the electrical conductivity of glasses in the Tl2O-B2O3 system is studied. The nature of charge carriers in this system is experimentally investigated for the first time. It is demonstrated using the Hittorf, Tubandt, and Hebb-Liang-Wagner techniques and the Faraday law that neither Tl+ ions nor electrons are involved in the electricity transport. The verification of the Faraday law does not reveal the presence of thallium in the amalgam of the cathode or a change in the sample weight after electrolysis, to within the experimental error. This allows one to make the inference that protons can be charge carriers in glasses of the Tl2O-B2O3 system. It is shown using extended X-ray absorption fine structure (EXAFS) spectroscopy that Tl3+ ions and thallium Tl0 reduced to the metallic state are absent in the structure of the glasses under investigation. This means that thallium in glasses of the Tl2O-B2O3 system occurs only in the form of Tl+ ions. The analysis of the IR spectroscopic data leads to only a qualitative conclusion that the water content in the glasses insignificantly increases with an increase in the thallium oxide content. An increase in the electrical conductivity of glasses in the Tl2O-B2O3 system with an increase in the thallium oxide content is explained by the increase in the number of protons formed upon dissociation of H+[BO4/2] structural-chemical units, because their concentration increases with increasing Tl2O content. In the structure of boron oxide, impurity hydrogen enters predominantly into the composition of H+[O2/2BO] structural-chemical units, for which the dissociation energy is higher than that for the H+[BO4/2] structural-chemical units. The increase in the concentration of H+[BO4/2] structural-chemical units is accompanied by the increase in the number of dissociated protons, which are charge carriers in glasses of the Tl2O-B2O3 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhabrev, V.A. and Svidorov, S.I., Ion Diffusion in Oxide Glasses and Melts: I. Bibliography, Fiz. Khim. Stekla, 2003, vol. 29, no. 2, pp. 210–229 [Glass Phys. Chem. (Engl. transl.), 2003. vol. 29, no. 2, pp. 140–159].

    Google Scholar 

  2. Ingram, M.D., Ionic Conductivity in Glass, Phys. Chem. Glasses, 1987, vol. 26, no. 6, pp. 215–234.

    Google Scholar 

  3. Sokolov, I.A., Murin, I.V., Naraev, V.N., and Pronkin, A.A., On the Nature of Current Carriers in Alkali-Free Glasses Based on Silicon, Boron, and Phosphorus Oxides, Fiz. Khim. Stekla, 1999, vol. 25, no. 5, pp. 593–613 [Glass Phys. Chem. (Engl. transl.), 1999, vol. 25, no. 5, pp. 454–468].

    Google Scholar 

  4. Naraev, V.N., The Influence of Water on the Glass Properties, Fiz. Khim. Stekla, 2004, vol. 30, no. 5, pp. 499–530 [Glass Phys. Chem. (Engl. transl.), 2004, vol. 30, no. 5, pp. 367–389].

    Google Scholar 

  5. Startsev, Yu.K. and Safutina, T.V., Influence of Residual Water in a Glass on Its Rheological and Relaxation Properties (by the Example of a 5Na2O-95B2O3 Glass), Fiz. Khim. Stekla, 2001, vol. 27, no. 5, pp. 601–610 [Glass Phys. Chem. (Engl. transl.), 2001, vol. 27, no. 5, pp. 411–417].

    Google Scholar 

  6. Startsev, Yu.K. and Golubeva, O.Yu., Specific Features of Changes in the Properties of One-and Two-Alkali Borate Glasses Containing Water: I. Viscosity, Thermal Expansion, and Kinetics of Structural Relaxation in Binary Alkali Borate Glasses, Fiz. Khim. Stekla, 2002, vol. 28, no. 3, pp. 230–245 [Glass Phys. Chem. (Engl. transl.), 2002, vol. 28, no. 3, pp. 159–169].

    Google Scholar 

  7. Sokolov, I.A., Naraev, V.N., Murin, I.V., Pronkin, A.A., and Naraev, A.V., Electrochemical Study of Glasses in the System Na2O-B2O3, Zh. Prikl. Khim. (S.-Peterburg), 2002, vol. 75, no. 8, pp. 1226–1233 [Russ. J. Appl. Chem. (Engl. transl.), 2002, vol. 75, no. 8, pp. 1240–1247].

    Google Scholar 

  8. Ostroumov, G., Determination of the Transport Numbers in Sodium Tetraborate Glasses, Zh. Obshch. Khim., 1949, vol. 19, no. 3, pp. 407–410.

    CAS  Google Scholar 

  9. Markin, B.N., Electrical Conductivity of Thallium Borate Glasses, Zh. Tekh. Fiz., 1958, vol. 22, no. 6, pp. 941–945.

    Google Scholar 

  10. MDL-SciGlass TM 5.0, San Leandro: MDL Information Systems, 2002.

  11. Sokolov, I.A., Murin, I.V., and Pronkin, A.A., The Nature of Charge Carriers and Their Transport Numbers in Glasses of the Ag2O-B2O3 System, Fiz. Khim. Stekla, 2006, vol. 32, no. 1, pp. 90–99 [Glass Phys. Chem. (Engl. transl.), 2006, vol. 32, no. 1, pp. 63–69].

    Google Scholar 

  12. SciGlass 7.0, Premium Edition, ITC, 2008, http://www.sciglass.info.

  13. Startsev, Yu.K., Technique for Measuring the Electric Conductivity of Glasses and Melts over a Wide Temperature Range Covering the Glass Transition Region, Fiz. Khim. Stekla, 2000, vol. 26, no. 1, pp. 103–115 [Glass Phys. Chem. (Engl. transl.), 2000, vol. 26, no. 1, pp. 73–82].

    Google Scholar 

  14. Hughes, K. and Isard, J.O., Ionic Transport in Glasses, in Physics of Electrolytes, Hladik, J., Ed., New York: Academic, 1972. Fizika elektrolitov. Protsessy perenosa v tverdykh elektrolitakh, Moscow: Mir, 1978, ch. 10.

    Google Scholar 

  15. Key, R.L., Measurement of Transport Numbers, in Techniques of Electrochemistry, Yeager, E. and Salkind, A.J., Eds., New York: Wiley, 1972. Translated under the title Metody izmereniya v elektrokhimii, Moscow: Mir, 1977.

    Google Scholar 

  16. Wagner, C., Galvanic Cells with Solid Electrolytes Involving Ionic and Electronic Conduction, Proceedings of the VII Meeting of the International Commission on Electrochemical, Thermal, and Kinetic Processes, London, 1955, London: Butterworth, 1957, pp. 361–389.

    Google Scholar 

  17. Liang, C., Determination of the Electronic Transference Numbers of Solid Electrolytes, Trans. Faraday Soc., 1970, vol. 65, no. 564, pp. 3369–3374.

    Google Scholar 

  18. Franz, H., Solubility of Water in Alkali Borate Glasses, J. Am. Ceram. Soc., 1966, vol. 49, no. 9, pp. 473–477.

    Article  CAS  Google Scholar 

  19. Eagan, R. V. and Bergeron, C.G., Determination of Water in Lead Borate Glasses, J. Am. Ceram. Soc., 1972, vol. 55, no. 1, pp. 53–54.

    Article  CAS  Google Scholar 

  20. Merker, L. and Scholze, H., Der Einflüß des Wassergehaltes von Silikatglässern auf Transformations-und Erweichngsverhalten, Glastech. Ber., 1962, vol. 35, no. 1, pp. 37–43.

    CAS  Google Scholar 

  21. Adams, R.V., Infrared Absorption Due to Water in Glasses, Phys. Chem. Glasses, 1961, vol. 2, no. 2, pp. 39–49.

    Google Scholar 

  22. Bartolomew, R.F., Water in Glass, in Treatise on Materials Science and Technology, Doremus, R.H. and Tomozawa, M., Eds., New York: Academic, 1982, vol. 22, pp. 75–127.

    Google Scholar 

  23. Bouaziz, R. and Touboul, M., Le systeme binaire monoborate de thallium-anhydride borique, C. R. Acad. Sci., Ser. C, 1967, vol. 264, no. 16, pp. 1374–1377.

    CAS  Google Scholar 

  24. Myuller, R.L., Elektroprovodnost’ stekloobraznykh veshchestv. Sbornik trudov (Electrical Conductivity of Vitreous Compounds: A Collection of Articles), Leningrad: Leningr. Gos. Univ., 1966 [in Russian].

    Google Scholar 

  25. Bray, P.J. and O’Keete, Y.G., Nuclear Magnetic Resonance Investigation of the Structure of Borate Glasses, J. Non-Cryst. Solids, 1980, vols. 38–39, pp. 93–98.

    Article  Google Scholar 

  26. Greenblatt, S. and Bray, P.J., A Discussion of the Fraction of Four-Co-Ordinated Boron Atoms Present in Borate Glasses, Phys. Chem. Glasses, 1967, vol. 8, no. 6, pp. 213–217.

    CAS  Google Scholar 

  27. Myuller, R.L., The Solid State Chemistry and the Vitreous State, in Khimiya tverdogo tela (The Solid State Chemistry), Leningrad: Leningr. Gos. Univ., 1965, pp. 9–63 [in Russian].

    Google Scholar 

  28. Bashilova, N.I., Thallium, in Kratkaya khimicheskaya entsiklopediya (Concise Chemical Encyclopedia), Moscow: Sovetskaya Entsiklopediya, 1967, vol. 5, pp. 10–18 [in Russian].

    Google Scholar 

  29. Ernsberger, F.M., Molecular Water in Glass, J. Am. Ceram. Soc., 1977, vol. 60, nos. 1–2, pp. 91–92.

    Article  CAS  Google Scholar 

  30. Sakka, S., Kamiva, R., and Huang, Z.J., Effects of a Small Amount of Water on Characteristics of Glasses, Res. Rep. Fac. Eng. Mie Univ., 1982, vol. 7, pp. 137–159.

    CAS  Google Scholar 

  31. Tomozawa, M., Water in Glass, J. Non-Cryst. Solids, 1985, vol. 73, nos. 1–3, pp. 197–204.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Startsev.

Additional information

Original Russian Text © I.A. Sokolov, I.V. Murin, V.D. Khripun, N.A. Valova, Yu.K. Startsev, A.A. Pronkin, 2008, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, I.A., Murin, I.V., Khripun, V.D. et al. Electrical conductivity and the nature of charge carriers in glasses of the Tl2O-B2O3 system. Glass Phys Chem 34, 227–239 (2008). https://doi.org/10.1134/S1087659608030012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659608030012

Keywords

Navigation