Skip to main content
Log in

Properties of the translucent ceramics Nd: Y2O3 prepared by pulsed compaction and sintering of weakly aggregated nanopowders

  • Proceedings of the Topical Meeting of the European Ceramic Society “Structural Chemistry of Partially Ordered Systems, Nanoparticles, and Nanocomposites” (St. Petersburg, Russia, June 27–29, 2006)
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A translucent cubic yttria ceramic material doped by neodymium, namely, 1Nd: Y2O3, with particles of micrometer size (5–17 μm) and clearly defined boundaries is synthesized from nanopowders prepared by laser-induced evaporation with the use of magnetic pulsed compaction and vacuum sintering. Owing to the high activity of nanoparticles, the sintering is performed at temperatures below 1750°C without densifying additives. An increase in the sintering temperature to 900°C leads to an increase in the visual transparency of the ceramic materials and a decrease in the radiation attenuation coefficient. The samples of the translucent ceramics are characterized by rather large values of the microhardness (11.8 GPa) and the fracture toughness as compared to those of single crystals of the same composition. The fracture toughness of the ceramic material increases by a factor of approximately 2.5 with a decrease in the average crystallite size from 5.0 to 0.6 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balkevich, V.L., Tekhnicheskaya keramika (Technical Ceramics), Moscow: Stroiizdat, 1984 [in Russian].

    Google Scholar 

  2. Lu, J., Lu, J., Murai, T., Takaichi, K., Uematsu, T., Ueda, K.I., Yagi, H., Yanagitani, T., and Kaminskii, A., Nd3+:Y2O3 Ceramic Laser, Jpn. J. Appl. Phys., 2001, vol. 40, pp. L1277–L1279.

    Article  CAS  Google Scholar 

  3. Kaminskii, A.A., Lazernye kristally (Laser Crystals), Moscow: Nauka, 1975 [in Russian].

    Google Scholar 

  4. Kaminskii, A.A., Ueda, K., Eichler, H.J., Bagaev, S.N., Takaichi, K., Lu, J., Shirakawa, A., Yagi, H., and Yanagitani, T., Observation of Nonlinear Lasing χ(3)-Effects in Highly Transparent Nanocrystalline Y2O3 and Y3Al3O12 Ceramics, Laser Phys. Lett., 2004, vol. 1, pp. 6–11.

    Article  CAS  Google Scholar 

  5. Lu, J., Ueda, K., Yagi, H., Yanagimi, T., Akiyama, Y., and Kaminskii, A., Neodymium Doped Yttrium Aluminum Garnet (Y3Al5O12) Nanocrystalline Ceramics—A New Generation of Solid State Laser and Optical Materials, J. Alloys Compd., 2002, vol. 341, pp. 220–225.

    Article  CAS  Google Scholar 

  6. De With, G. and van Dijk, H.V.A., Translucent Y3Al5O12 Ceramics, Mater. Res. Bull., 1984, vol. 19, pp. 1669–1674.

    Article  Google Scholar 

  7. Sekita, M., Haneda, H., Yanagitani, Y., and Shirasaki, S., Induced Emission Cross Section of Nd: Y3Al5O12 Ceramics, J. App. Phys., 1990, vol. 67, pp. 453–458.

    Article  CAS  Google Scholar 

  8. Sekita, M., Haneda, H., Shirasaki, S., and Yanagitani, Y., Optical Spectra of Undoped and Rare-Earth (Pr, Nd, Eu, and Er) Doped Translucent Y3Al5O12 Ceramics, J. Appl. Phys., 1991, vol. 69, pp. 3709–4718.

    Article  CAS  Google Scholar 

  9. Ikesue, A., Kinoshita, T., Kamata, K., and Yoshida, T., Fabrication and Optical Properties of High-Performance Polycrystalline Nd: YAG Ceramics for Solid-State Lasers, J. Am. Ceram. Soc., 1995, vol. 78, pp. 1033–1040.

    Article  CAS  Google Scholar 

  10. Hahn, H., Microstructure and Properties of Nanostructured Oxides, Nanostruct. Mater., 1993, vol. 2, pp. 251–258.

    Article  CAS  Google Scholar 

  11. He, Y.J., Winnubst, A.J.A., Verweij, H., and Burggraaf, A.J., Sinter Forging of Zirconia Toughened Alumina, J. Mater. Sci., 1994, no. 29, pp. 6505–6512.

  12. Greskovich, C. and Woods, K.N., Fabrication of Transparent ThO2-Doped Y2O3, Am. Ceram. Soc. Bull., 1973, vol. 52, pp. 473–478.

    CAS  Google Scholar 

  13. Lukin, E.S., Efimovskaya, T.V., Belyakov, A.V., Tarasovskii, V.P., and Pshechenkov, P.A., Sintering and Formation of Microstructure of Translucent Polycrystalline Oxide Ceramics, Khim. Khim. Tekhnol. Silikat. Mater., 1983, no. 128, pp. 47–54.

  14. Lukin, E.S., Modern High-Density Oxide Ceramics with Controlled Microstructure, Ogneupory, 1978, no. 4, pp. 2–13.

  15. Ikegami, T., Li, J.-G., and Mori, T., Fabrication of Transparent Yttria Ceramics by the Low-Temperature Synthesis of Yttrium Hydroxide, J. Am. Ceram. Soc., 2002, vol. 85, no. 7, pp. 1725–1729.

    Article  CAS  Google Scholar 

  16. Mouzon, J., Synthesis of Yb:Y2O3 Nanoparticles and Fabrication of Transparent Polycrystalline Yttria Ceramics, PhD Thesis, Lulea University of Technology, 2005.

  17. Solomonov, V.I., Rasuleva, A.V., Osipov, V.V., and Ivanov, M.G., The Luminescent Investigation of Laser Nanomaterials Nd: Y2O3 and Nd: YAG, Proceedings of E-MRS 2005 Fall Meeting, Warsaw, Poland, Warsaw, 2005, p. 230.

  18. Osipov, V.V., Ivanov, M.G., Lisenkov, V.V., and Platonov, V.V., High-Efficiency Pulse-Periodic CO2 Laser LAERT for Engineering Applications, Kvantovaya Elektron. (Moscow), 2002, vol. 32, no. 3, pp. 253–259.

    Article  CAS  Google Scholar 

  19. Kotov, Yu.A., Osipov, V.V., Ivanov, M.G., Samatov, O.M., Platonov, V.V., Azarkevich, E.I., Murzakaev, A.M., and Medvedev, A.I., Properties of Oxide Nanopowders Prepared by Target Evaporation with a Pulse-Periodic CO2, Laser Tech. Phys., 2002, vol. 47, no. 11, pp. 1420–1426.

    CAS  Google Scholar 

  20. Ivanov, V., Paranin, S., and Nozdrin, A., Principles of Pulsed Compaction of Ceramic Nano-Sized Powders, Key Eng. Mater., 1997, vols. 132–136, pp. 440–403.

    Google Scholar 

  21. Ivanov, V.V., Paranin, S.N., Vikhrev, A.N., and Nozdrin, A.A., Efficiency of Dynamic Methods for Compacting Nanopowders, Materialovedenie, 1997, no. 5, pp. 49–55.

  22. Dong, S., Beake, B.D., Parkinson, R., Xu, B., Hu, Z., and Bell, T., Determination of Hardness and Young’s Modulus of Brush Plated Nano-Al2O3/Ni Composite Coating by Nanoindentation Testing, Surface Eng., 2003, vol. 19, no. 3, pp. 195–199.

    Article  CAS  Google Scholar 

  23. Kaminskii, A.A., Akchurin, M.Sh., Gainutdinov, R.I., Takaichi, K., Shirakava, A., Yagi, Ch., Yanagitani, T., and Ueda, K., Microhardness and Fracture Toughness of Y2O3-and Y3Al5O12-Based Nanocrystalline Laser Ceramics, Kristallografiya, 2005, vol. 50, no. 5, pp. 935–939 [Crystallogr. Rep. (Engl. transl.), 2005, vol. 50, no. 5, pp. 869–873].

    Google Scholar 

  24. Ander, H., Lehmann, J., and Ziegler, G., Improved Characterization of Ceramic Powder Surfaces—A Comparison of Different FTIR-Spectroscopy Methods, Key Eng. Mater., 1997, vols. 132–136, pp. 271–276.

    Article  Google Scholar 

  25. Monterra, C. and Magnacca, G., A Case Study: Surface Chemistry and Structure of Catalytic Aluminas, as Studied by Vibrational Spectroscopy of Adsorbed Species, Catal. Today, 1996, vol. 27, pp. 497–532.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ivanov.

Additional information

Original Russian Text © V.V. Ivanov, A.S. Kaigorodov, V.R. Khrustov, V.V. Osipov, A.I. Medvedev, A.M. Murzakaev, A.N. Orlov, 2007, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, V.V., Kaigorodov, A.S., Khrustov, V.R. et al. Properties of the translucent ceramics Nd: Y2O3 prepared by pulsed compaction and sintering of weakly aggregated nanopowders. Glass Phys Chem 33, 387–393 (2007). https://doi.org/10.1134/S108765960704013X

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765960704013X

Keywords

Navigation