Skip to main content
Log in

Synthesis and properties of nanocomposites with mixed ionic-electronic conductivity on the basis of oxide phases with perovskite and fluorite structures

  • Proceedings of the Topical Meeting of the European Ceramic Society “Structural Chemistry of Partially Ordered Systems, Nanoparticles, and Nanocomposites” (St. Petersburg, Russia, June 27–29, 2006)
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Nanocomposites consisting of phases with fluorite (doped CeO2) and perovskite (LaMnO3, GdMnO3) structures are synthesized using the method of ester polymeric precursors (the Pechini method) and two sources of rare-earth elements (Ln), such as pure cerium and gadolinium salts or a commercial mixture of rare-earth carbonates containing La, Ce, Pr, Nd, and Sm cations. The genesis of the nanocomposite structure as a function of the sintering temperature is investigated using X-ray diffraction and electron microscopy. It is revealed that the genesis of the nanocomposite structure is governed, in many respects, by the fact that the decomposition of the ester polymeric precursor leads to the formation of a metastable phase, namely, a fluoritelike solid solution based on ceria with an excess concentration of the cations Ln 3+ (Ln 3+ = La3+, Pr3+, Nd3+, Sm3+) as compared to the equilibrium concentration. As a result, the perovskite phase (identified by X-ray diffraction analysis) is formed only after the subsequent annealing at temperatures higher than 800°C, when Ln 3+ cations escape from particles of the solid solution. It is demonstrated that, at annealing temperatures of up to 1100°C, particles of both phases have nanometer sizes and are characterized by a uniform spatial distribution necessary for percolation. The nanocomposites possess a high total electrical conductivity and a high mobility of lattice oxygen. The reduction rate of the nanocomposites with hydrogen or methane is higher than the reduction rate of the individual phases. The characteristics of the nanocomposites prepared from the commercial mixture of rare-earth carbonates are better than those of the samples synthesized from the pure salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dusastre, V. and Kilner, J.A., Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications, Solid State Ionics, 1999, vol. 126, pp. 163–174.

    Article  CAS  Google Scholar 

  2. Atkinson, A., Barnett, S., Gorte, R.J., Irvine, J.T.S., McEvoy, A.J., Mogensen, M., Singhal, S.C., and Vohs, J., Advanced Anodes for High-Temperature Fuel Cells, Nat. Mater., 2004, vol. 3, pp. 17–27.

    Article  CAS  Google Scholar 

  3. Kharton, V.V., Kovalevsky, A.V., Viskup, A.P., Shaula, A.L., Figueiredo, F.M., Naumovich, E.N., and Marques, F.M.B., Oxygen Transport in \(Ce_{0.8} Gd_{0.2} O_{2 - \delta ^ - } \) Based Composite Membranes, Solid State Ionics, 2003, vol. 160, pp. 247–258.

    Article  CAS  Google Scholar 

  4. Figueiredo, F.M., Frade, J.R., and Marques, F.M.B., Performance of Composite LaCoO3-La2(Zr,Y)2O7 Cathodes, Solid State Ionics, 2000, vol. 135, pp. 463–467.

    Article  CAS  Google Scholar 

  5. Nigge, U., Wiemhöfer, H.-D., Römer, E.W.J., Bouwmeester, H.J.M., and Schulte, T.R., Composites of Ce0.8Gd0.2O1.9 and Gd0.7Ca0.3CoO3+δ as Oxygen Permeable Membranes for Exhaust Gas Sensors, Solid State Ionics, 2002, vol. 146, pp. 163–174.

    Article  CAS  Google Scholar 

  6. Murray, E.P. and Barnett, S.A., (La,Sr)MnO3-(Ce,Gd)O2−x Composite Cathodes for Solid Oxide Fuel Cells, Solid State Ionics, 2001, vol. 143, pp. 265–273.

    Article  Google Scholar 

  7. Zyryanov, V.V., Uvarov, N.F., Sadykov, V.A., Frolova, Y.V., Alikina, G.M., Lukashevich, A.I., Ivanovskaya, M.I., Criado, J.M., and Neophytides, S., Mechanosynthesis of Complex Oxides and Preparation of Mixed Conducting Nanocomposites for Catalytic Membrane Reactors, Catal. Today, 2005, vol. 104, pp. 114–119.

    Article  CAS  Google Scholar 

  8. Balachandran, U., Dusek, J.T., Mieville, R.L., Poeppel, R.B., Kleefisch, M.S., Pei, S., Kobylinski, T.P., Udovich, C.A., and Bose, A.C., Dense Ceramic Membranes for Partial Oxidation of Methane to Syngas, Appl. Catal., A, 1995, vol. 133, pp. 19–29.

    Article  CAS  Google Scholar 

  9. Ma, B. and Balachandran, U., Phase Stability of SrFeCo0.5 in Reducing Environment, Mater. Res. Bull., 1998, vol. 33, pp. 223–236.

    Article  CAS  Google Scholar 

  10. Hendriksen, P.V., Larsen, P.H., Mogensen, M., Poulsen, F.W., and Wiik, K., Prospects and Problems of Dense Oxygen Permeable Membranes, Catal. Today, 2000, vol. 56, pp. 283–295.

    Article  CAS  Google Scholar 

  11. McIntosh, S., Vente, J.F., Haije, W.G., Blank, D.H.A., and Bouwmeester, H.J.M., Phase Stability and Oxygen Nonstoichiometry of SrCo0.8Fe0.2O3−δ Measured by In Situ Neutron Diffraction, Solid State Ionics, 2006, vol. 177, pp. 833–842.

    Article  CAS  Google Scholar 

  12. Kosacki, I., Suzuki, T., Petrovskii, V., and Anderson, H.U., Electrical Conductivity of Nanocrystalline Ceria and Zirconia Thin Films, Solid State Ionics, 2000, vols. 136–137, pp. 1225–1233.

    Article  Google Scholar 

  13. Pechini, M.P., Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor, US Patent 3 330 697, 1967.

  14. Sadykov, V.A., Bulgakov, N.N., Muzykantov, V.S., Kuznetsova, T.G., Alikina, G.M., Lukashevich, A.I., Potapova, Yu.V., Rogov, V.A., Burgina, E.B., Zaikovskii, V.I., Moroz, E.M., Litvak, G.S., Yakovleva, I.S., Zyryanov, V.V., Kemnitz, E., and Neophytides, S., Mobility and Reactivity of the Surface and Lattice Oxygen of Some Complex Oxides with Perovskite Structure, in Mixed Ionic Electronic Conducting Perovskites for Advanced Energy System, Orlovskaya, N. and Browning, N., Eds., Boston: Kluwer Academic, 2004, pp. 49–70.

    Google Scholar 

  15. Sadykov, V.A., Pavlova, S.N., Bunina, R.V., Alikina, G.M., Tikhov, S.F., Kuznetsova, T.G., Frolova, Yu.V., Lukashevich, A.I., Snegurenko, O.I., Sazonova, N.N., Kazantseva, E.V., Dyatlova, Yu.N., Usol’tsev, V.V., Zolotarskii, I.A., Bobrova, L.N., Kuz’min, V.A., Gogin, L.L., Vostrikov, Z.Yu., Potapova, Yu.V., Muzykantov, V.S., Paukshtis, E.A., Burgina, E.B., Rogov, V.A., Sobyanin, V.A., and Parmon, V.N., Selective Oxidation of Hydrocarbons into Synthesis Gas at Short Contact Times: Design of Monolith Catalysts and Main Process Parameters, Kinet. Katal., 2005, vol. 46, no. 2, pp. 243–268 [Kinet. Catal. (Engl. transl.), 2005 vol. 46, no. 2, pp. 227–250].

    Google Scholar 

  16. Frolova-Borchert, Yu.V., Sadykov, V.A., Alikina, G.M., Lukashevich, A.I., Moroz, E.M., Kochubey, D.I., Kriventsov, V.V., Zaikovskii, V.I., Zyryanov, V.V., and Uvarov, N.F., Nanocomposites Comprised of Doped Cerium Dioxide and Lanthanum Manganite for Syngas Production, Solid State Ionics, 2006, vol. 177, pp. 2533–2538.

    Article  CAS  Google Scholar 

  17. Mori, M., Hiei, Y., Yamamoto, T., and Itoh, H., Lanthanum Alkaline-Earth Manganites as a Cathode Material in High-Temperature Solid Oxide Fuel Cells, J. Electrochem. Soc., 1999, vol. 146, pp. 4041–4047.

    Article  CAS  Google Scholar 

  18. Sadykov, V.A., Kuznetsova, T.G., Alikina, G.M., Frolova, Y.V., Lukashevich, A.I., Potapova, Y.V., Muzykantov, V.S., Rogov, V.A., Kriventsov, V.V., Kochubei, D.I., Moroz, E.M., Zyuzin, D.I., Zaikovskii, V.I., Kolomiichuk, V.N., Paukshtis, E.A., Burgina, E.B., Zyryanov, V.V., Uvarov, N.F., Neophytides, S., and Kemnitz, E., Ceria-Based Fluorite-Like Oxide Solid Solutions as Catalysts of Methane Selective Oxidation into Syngas by the Lattice Oxygen: Synthesis, Characterization, and Performance, Catal. Today, 2004, vols. 93–95, pp. 45–53.

    Article  Google Scholar 

  19. Sadykov, V.A., Kuznetsova, T.G., Frolova-Borchert, Yu.V., Alikina, G.M., Lukashevich, A.I., Rogov, V.A., Muzykantov, V.S., Pinaeva, L.G., Sadovskaya, E.M., Ivanova, Yu.A., Paukshtis, E.A., Mezentseva, N.V., Batuev, L.Ch., Parmon, V.N., Neophytides, S., Kemnitz, E., Scheurell, K., Mirodatos, C., and van Veen, A.C., Fuel-Rich Methane Combustion: Role of the Pt Dispersion and Oxygen Mobility in a Fluorite-Like Complex Oxide Support, Catal. Today, 2006, vol. 117, pp. 475–483.

    Article  CAS  Google Scholar 

  20. Shannon, R.D., Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, pp. 751–767.

    Article  Google Scholar 

  21. Isupova, L.A., Obyskalova, E.A., Rogov, V.A., Tsybulya, S.V., Dovlitova, L.S., Burgina, E.B., Ischenko, A.V., Zaikovskii, V.I., Sadykov, V.A., and Orlovskya, N., Doped Ceria-LaMeO3 (Me = Mn, Fe, Co) Nanocomposites: Synthesis via Mechanochemical Activation Route and Properties, Mater. Res. Soc. Symp. Proc., 2006, vol. 885E, pp. 03.04.01–03.04.06.

    Google Scholar 

  22. Borchert, H., Borchert, Y., Kaichev, V.V., Prosvirin, I.P., Alikina, G.M., Lukashevich, A.I., Zaikovskii, V.I., Moroz, E.M., Paukshtis, E.A., Bukhtiyarov, V.I., and Sadykov, V.A., Nanostructured, Gd-Doped Ceria Promoted by Pt or Pd: Investigation of the Electronic and Surface Structures and Relations to Chemical Properties, J. Phys. Chem. B, 2005, vol. 109, pp. 20077–20086.

    Article  CAS  Google Scholar 

  23. Roy, C. and Budhani, R.C., Raman, Infrared, and X-ray Diffraction Study of Phase Stability in La1−x BaxMnO3 Doped Manganites, J. Appl. Phys., 1999, vol. 85, pp. 3124–3131.

    Article  CAS  Google Scholar 

  24. Abrashev, M.V., Litvinchuk, A.P., Iliev, M.N., Meng, R.L., Popov, V.N., Ivanov, V.G., Chakalov, R.A., and Thomsen, C., Comparative Study of Optical Phonons in the Rhombohedrally Distorted Perovskites LaAlO3 and LaMnO3, Phys. Rev. B: Condens. Matter, 1999, vol. 59, no. 6, pp. 4146–4153.

    CAS  Google Scholar 

  25. Khalyavin, D.D., Shiryaev, S.V., Barilo, S.N., Bychkov, L., Kurochkin, L.A., Szymczak, H., and Szymczak, R., Preparation and Properties of Lanthanum, Cobalt, and Manganese Ternary Oxide Single Crystals with a Perovskite Structure, Poverkhnost, 2002, no. 6, pp. 10–13.

  26. Tu, H.Y., Phylipps, M.B., Takeda, Y., Ichikawa, T., Imanishi, N., Sammes, N.M., and Yamamoto, O., Gd1−x AxMn1−y CoxO3−δ (A = Sr, Ca) as a Cathode for Solid Oxide Fuel Cells, J. Electrochem. Soc., 1999, vol. 146, pp. 2085–2091.

    Article  CAS  Google Scholar 

  27. Takeda, Y., Sakaki, Y., Ichikawa, T., Imanishi, N., Yamamoto, O., Mori, M., Mori, N., and Abe, T., Stability of La1−x AxMnO3−z (A = Ca, Sr) as Cathode Materials for Solid Oxide Fuel Cells, Solid State Ionics, 1994, vol. 72, pp. 257–264.

    Article  CAS  Google Scholar 

  28. Kuznetsova, T., Sadykov, V., Batuev, L., Moroz, E., Burgina, E., Rogov, V., Kurina, L., and Neophytides, S., Structural Features and the Lattice Oxygen Reactivity of Low-Temperature Lanthanum Manganites Doped with Different Cations, React. Kinet. Catal. Lett., 2005, vol. 86, pp. 249–256.

    Article  CAS  Google Scholar 

  29. Sadykov, V.A., Frolova, Y.V., Alikina, G.M., Lukashevich, A.I., Muzykantov, V.S., Rogov, V.A., Moroz, E.M., Zyuzin, D.A., Ivanov, V.P., Borchert, H., Paukshtis, E.A., Bukhtiyarov, V.I., Kaichev, V.V., Neophytides, S., Kemnitz, E., and Scheurell, K., Mobility and Reactivity of the Lattice Oxygen in Pr-Doped Ceria Promoted with Pt, React. Kinet. Catal. Lett., 2005, vol. 86, no. 1, pp. 21–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sadykov.

Additional information

Original Russian Text © V.A. Sadykov, Yu.V. Borchert, G.M. Alikina, A.I. Lukashevich, N.V. Mezentseva, V.S. Muzykantov, E.M. Moroz, V.A. Rogov, V.I. Zaikovskii, D.A. Zyuzin, N.F. Uvarov, A.V. Ishchenko, V.V. Zyryanov, A. Smirnova, 2007, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadykov, V.A., Borchert, Y.V., Alikina, G.M. et al. Synthesis and properties of nanocomposites with mixed ionic-electronic conductivity on the basis of oxide phases with perovskite and fluorite structures. Glass Phys Chem 33, 320–334 (2007). https://doi.org/10.1134/S1087659607040049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659607040049

Keywords

Navigation