Skip to main content
Log in

Oxidation processes in glass-ceramic composites based on titanium boride

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The reaction formation of TiB2-and SiO2-based composite materials and coatings upon heat treatment of initial components in air is investigated. It is shown that the glass melt formed in the course of the chemical reaction encapsulates titanium boride particles, thus imparting the high-temperature strength to the composite material. The influence of the concentration and sizes (down to a nanometer scale) of silica particles on the kinetics of oxidation of the compact samples and coated graphite during their heat treatment is studied using gravimetric, differential thermal, and X-ray powder diffraction analyses. The phase compositions of the surface layers and the bulk of the samples are determined. The compositions of coatings that ensure effective protection of graphite from oxidation in air at high temperatures are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kieffer, R. and Benesovsky, F., Hartmetalle, Vienna: Springer-Verlag, 1965. Translated under the title Tverdye splavy, Moscow: Metallurgiya, 1971.

    Google Scholar 

  2. Samsonov, G.V., Serebryakova, T.I., and Neronov, V.A., Boridy (Borides), Moscow: Atomizdat, 1975 [in Russian].

    Google Scholar 

  3. Grigor’ev, O.N., Koroteev, A.V., Klimenko, A.V., Maiboroda, E.E., Prilutskii, E.V., and Bega, N.D., Preparation and Properties of Multilayer Ceramic Materials in the SiC-TiB2 System, Ogneupory Tekh. Keram., 2000, no. 11, pp. 20–25.

  4. Dvorina, L.A., Yukhimenko, E.V., and Vdovenko, S.A., Interaction of Titanium Diboride with Titanium Disilicide and Silicon at High Temperatures, Poroshk. Metall., 1972, no. 4 (112), pp. 61–65.

  5. Ordan’yan, S.S., Dmitriev, A.I., Stepanenko, E.K., Aulova, N.Yu., and Semenov, N.E., The SiC-TiB2 System as the Basis for High-Hardness Durable Materials, Poroshk. Metall., 1987, no. 5, pp. 32–34.

  6. Ordan’yan, S.S. and Vikhman, S.V., On the Properties of Composite Materials in the SiC-TiB2 System, Ogneupory Tekh. Keram., 1997, no. 7, pp. 2–4.

  7. Yue, X.M., Zhang, G.J., and Wang, Y.M., Reaction Synthesis and Mechanical Properties of TiB2-AIN-SiC Composites, J. Eur. Ceram. Soc., 1999, vol. 19, pp. 293–298.

    Article  CAS  Google Scholar 

  8. Kuramoto, T., Method of Producing of MeB2 Ceramics, US Patent 5 019 540, C04B 35/58, 1990.

  9. Matsushita, J., Hayashi, S., and Saito, H., Oxidation of TiB2-Al2O3 Composites in Air, J. Ceram. Soc. Jpn., 1990, vol. 98, no. 3, pp. 308–310.

    CAS  Google Scholar 

  10. Lavrenko, V.A., Chuprov, S.S., Umanskii, A.P., Protsenko, T.G., and Lugovskaya, E.S., High-Temperature Oxidation of Composite Materials Based on Titanium Boride, Poroshk. Metall., 1987, no. 9, pp. 84–86.

  11. Voitovich, R.F. and Pugach, E.A., High-Temperature Oxidation of Group IV Metal Borides, Poroshk. Metall., 1975, no. 2 (146), pp. 57–62.

  12. Samsonov, G.V. and Golubeva, N.K., Regularities and Mechanism of Oxidation of Hard High-Melting Compounds of Titanium, Zh. Fiz. Khim., 1956, vol. 30, no. 6, pp. 1258–1266.

    CAS  Google Scholar 

  13. Tampieri, A., Landi, E., and Bellosi, A., On the Oxidation Behaviour of Monolithic TiB2 and TiB2-Al2O3 and Si3N4-TiB2 Composites, J. Therm. Anal., 1992, vol. 38, pp. 2657–2668.

    Article  CAS  Google Scholar 

  14. Pugach, E.A., Golovko, E.I., and Dvorina, L.V., High-Temperature Oxidation of TiB2-TiSi2 Alloys, Poroshk. Metall., 1977, no. 2 (170) pp. 34–37.

  15. Voitovich, R.F., Tugoplavkie soedineniya (Refractory Materials), Kiev: Naukova Dumka, 1971 [in Russian].

    Google Scholar 

  16. Portnoi, K.I. and Samsonov, G.V., Some Principles of Doping of Boride Alloys, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 1958, no. 7, pp. 140–141.

  17. Portnoi, K.I., Samsonov, G.V., and Frolova, K.I., Doping of Boride Alloys with Silicon, Izv. Akad. Nauk SSSR, Ser. Metall. Toplivo, 1959, no. 2, pp. 117–121.

  18. Ban’kovskaya, I.B. and Zhabrev, V.A., Kinetic Analysis of the Heat Resistance of ZrB2-SiC Composites, Fiz. Khim. Stekla, 2005, vol. 31, no. 4, pp. 650–661 [Glass Phys. Chem. (Engl. transl.), 2005, vol. 31, no. 4, pp. 482–488].

    Google Scholar 

  19. Ban’kovskaya, I.B., Semov, M.P., Lapshin, A.E., and Kostyreva, T.G., Nanotechnology for Encapsulating Zirconium Boride upon Formation of Heat-Resistant Coatings, Fiz. Khim. Stekla, 2005, vol. 31, no. 4, pp. 581–588 [Glass Phys. Chem. (Engl. transl.), 2005, vol. 31, no. 4, pp. 433–438].

    Google Scholar 

  20. Novyi spravochnik khimika i tekhnologa. Elektrodnye protsessy. Khimicheskaya kinetika i diffuziya. Kolloidnaya khimiya (A New Handbook for Chemists and Technologists: Electrode Processes, Chemical Kinetics and Diffusion, and Colloidal Chemistry), St. Petersburg: Professional, 2004 [in Russian].

  21. Lavrenko, V.A. and Gogotsi, Yu.G., Korroziya konstruktsionnoi keramiki (Corrosion of Structural Ceramics), Moscow: Metallurgiya, 1989 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.B. Ban’kovskaya, 2007, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ban’kovskaya, I.B. Oxidation processes in glass-ceramic composites based on titanium boride. Glass Phys Chem 33, 80–85 (2007). https://doi.org/10.1134/S1087659607010129

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659607010129

Keywords

Navigation