Skip to main content
Log in

Cadmium Behavior in Sulfur-bearing Aqueous Environments: Insight from CdS Solubility Measurements at 25–80°C

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The present experimental study explores the effects of temperature and sulfur in Cd aqueous geochemistry under reduced conditions. Greenockite CdS solubility is measured in H2O–H2S–HClO4–NaHS solutions at 25–80°C as a function of pH and sulfur concentration. Based on solubility product measurements in highly acid solutions, the standard thermodynamic properties of greenockite (CdS) are revised, and the recommended value of \({{\Delta }_{f}}G_{{298.15}}^{0}\) for greenockite CdS(s) is –151.5 ± 0.3 kJ mol–1. The stability of greenockite (CdS) is higher than predicted by calculations using previous literature data. At 80°C, the stability constants for Cd–HS complexes are measured for the first time, the values are 10–5.65 ± 1.00 for CdS(s) + H+ = CdHS+, 10–6.00 ± 0.40 for CdS(s) + H2S\(_{{({\text{aq}})}}^{0}\) = Cd(HS)\(_{{2({\text{aq}})}}^{0}\), 10–3.87 ± 0.10 for CdS(s) + H2S\(_{{({\text{aq}})}}^{0}\) + HS = Cd(HS)\(_{3}^{ - }\), and 10–3.53 ± 0.20 for CdS(s) + H2S\(_{{({\text{aq}})}}^{0}\) + 2HS = Cd(HS)\(_{4}^{{2 - }}\). Modeling of Cd behavior at 3–200°C shows that Cd–HS species are more important than previously believed. The fraction of Cd(HS)\(_{n}^{{2 - n}}\) (n = 1–4) complexes increases with m H2S and decreases with T. Thus, in euxinic marine environments with m H2S ≥ 10–5, Cd speciation changes from Cd–Cl to Cd-HS. This speciation change is expected to affect Cd isotope fractionation and should be accounted for when applying Cd isotopic signature as a paleo tracer in marine sediments. The new thermodynamic data are indispensable for modeling Cd behavior in response to pH, T, and m H2S. As a function of these parameters, sulfur has the main control on Cd geochemistry being the main factor of Cd precipitation at low m H2S and favoring Cd mobilization at high m H2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Al-Farawati, R. and Van Den Berg, C.M.G., Metal-sulfide complexation in seawater. Mar. Chem. 1999, vol. 63, pp. 331–352.

    Article  Google Scholar 

  2. Archer, D.J., Thermodynamic properties of import to environmental processes and remediation. I. Previous thermodynamic property values for cadmium and some of its compounds, J. Phys. Chem. Ref. Data, 1998, vol. 27, pp. 915–946.

    Article  Google Scholar 

  3. Bazarkina, E.F., Pokrovski, G.S., Zotov, A.V., and Hazemann, J.-L., Structure and stability of cadmium chloride complexes in hydrothermal fluids, Chem. Geol., 2010a, vol. 276, pp. 1–17.

    Article  Google Scholar 

  4. Bazarkina, E.F., Zotov, A.V., and Akinfiev, N.N., Pressure dependent stability of cadmium chloride complexes: potentiometric measurements at 1–1000 bar and 25°C, Geol. Ore Deposits, 2010b, vol. 52, pp. 167–178.

    Article  Google Scholar 

  5. Belcher, R., Townshen, A., and Farr, J.P.G., Solubility product of cadmium sulphide, Talanta, 1969, vol. 16, pp. 1089–1093.

    Article  Google Scholar 

  6. Belissont, R., Boiron, M.-C., Luais, B., and Cathelineau, M., LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac–Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes, Geochim. Cosmochim. Acta, 2014, vol. 126, pp. 518–540.

    Article  Google Scholar 

  7. Beyer, R.P., Ferrante, M.J., and Mrazek, R.V., An automated calorimeter for heat-capacity measurements from 5 to 300 K The heat capacity of cadmium sulfide from 5.37 to 301.8 K and the relative enthalpy to 1103.4 K, J. Chem. Thermodyn., 1983, vol. 15, pp. 827–834.

    Article  Google Scholar 

  8. Bonnet, J., Mosser-Ruck, R., Caumon, M.-C., Rouer, O., Andre-Mayer, A.-S., Cauzid, J., and Peiffert, C., Trace element distribution (Cu, Ga, Ge, Cd, and Fe) in sphalerite from the Tennessee MVT deposits, USA, by combined EMPA, LA-ICP-MS, Raman spectroscopy, and crystallography, Can. Mineral., 2016, vol. 54, pp. 1261–1284.

    Article  Google Scholar 

  9. Carolin, C.F., Kumar, P.S., Saravanan, A., Joshiba, G.J., and Naushad, Mu., Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review, J. Environ. Chem. Eng., 2017, vol. 5, pp. 2782–2799.

    Article  Google Scholar 

  10. Chen, S.H., Cheow, Y.L., Ng, S.L., and Ting, A.S.Y., Mechanisms for metal removal established via electron microscopy and spectroscopy: a case study on metal tolerant fungi Penicillium simplicissimum, J. Hazard. Mater., 2019, vol. 362, pp. 394–402.

    Article  Google Scholar 

  11. Colantonio, N. and Kim, Y., Cadmium (II) removal mechanisms in microbial electrolysis cells, J. Hazard. Mater., 2016, vol. 311, 134–141.

    Article  Google Scholar 

  12. Cox, J.D., Wagman, D.D., and Medvedev, V.A., CODATA Key Values for Thermodynamics, New York: Hemisphere Publishing Corporation, 1989.

    Google Scholar 

  13. Crea, F., Foti, C., Milea, D., and Sammartano, S., Speciation of cadmium in the environment, In Cadmium: From Toxicity to Essentiality Metal Ions in Life Science, Sigel, A., Sigeel, H., and Sigel, R.K.O., Eds., New York: Springer, 2013, pp. 63–83.

    Google Scholar 

  14. Cullen, J.T. and Maldonado, M.T., Biogeochemistry of cadmium and its release to the environment, In Cadmium: From Toxicity to Essentiality Metal Ions in Life Science, Sigel, A., Sigel, H., and Sigel, R.K.O., Eds., New York: Springer, 2013, pp. 31–62.

    Google Scholar 

  15. Daskalakis, K.D. and Helz, G.R., Solubility of cadmium sulfide (greenockite) in sulfidic waters at 25°C, Environ. Sci. Technol., 1992, vol. 26, pp. 2462–2468.

    Article  Google Scholar 

  16. Deore, S. and Navrotsky, A., Oxide melt solution calorimetry of sulfides: Enthalpy of formation of sphalerite, galena, greenockite, and hawleyite, Am. Mineral., 2006, vol. 91, pp. 400–403.

    Article  Google Scholar 

  17. Foti, C., Lando, G., Millero, F.J., and Sammartano, S., Experimental study and modelling of inorganic Cd2+ speciation in natural waters, Environ. Chem., 2011, vol. 8, pp. 320–331.

    Article  Google Scholar 

  18. Grichuk, D.V., The Cd/Zn Ratio As an Indicator of contribution of magmatic fluids to hydrorothermal systems, in New Ideas in Geoscience, Moscow: KDU, 2005, Vol. 2.

    Google Scholar 

  19. Janssen, D.J., Conway, T.M., John, S.G., Christian, J.R., Kramer, D.I., Pedersen, T.F., and Cullen, J.T., Undocumented water column sink for cadmium in open ocean oxygen-deficient zones, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 19, pp. 6888–6893.

    Article  Google Scholar 

  20. Johnson, J.W., SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C, Comp. Geosci., 1992, vol. 18, pp. 899–947.

    Article  Google Scholar 

  21. Kamyshny, A., Gun, J., Rizkov, D., Voittsekovski, T., and Lev, O., Equilibrium distribution of polysulfide ions in aqueous solutions at different temperatures by rapid single-phase derivatization, Environ. Sci. Technol., 2007, vol. 41, pp. 2395–2400.

    Article  Google Scholar 

  22. Li, M.-L., Liu, S.-A., Xue, C.-J., and Li, D., Zinc, cadmium and sulfur isotope fractionation in a supergiant MVT deposit with bacteria, Geochim. Cosmochim. Acta, 2019, vol. 265, pp. 1–18.

    Article  Google Scholar 

  23. Lide, D.R., CRC Handbook of Chemistry and Physics, 84th ed., CRC Press, 2003.

    Google Scholar 

  24. Little, S.H., Vance, D., Lyons, T., and McManus, J., Controls on trace metal authigenic enrichment in reducing sediments: insights from modern oxygen-deficient settings, Am. J. Sci., 2015, vol. 315, pp. 77–119.

    Article  Google Scholar 

  25. Marshall, W.L. and Franck, E.U., Ion product of water substance, 0–1000°C, 1–10000 bars. New international formulation and its background, J. Phys. Chem. Ref. Data, 1981, vol. 10, pp. 295–304.

    Article  Google Scholar 

  26. Martinkova, E., Chrastny, V., Francova, M., Sipkova, A., Curik, J., Myska, O., and Mizic, L., Cadmium isotope fractionation of materials derived from various industrial processes, J. Hazard. Mater., 2016, vol. 302, pp. 114–119.

    Article  Google Scholar 

  27. Millero, F.J. and DiTrolio, B., Use of thermodynamics in examining the effects of ocean acidification, Elements, 2010, vol. 6, pp. 299–303.

    Article  Google Scholar 

  28. Millero, F.J., Woosley, R., DiTrolio, B., and Waters, J., Effect of ocean acidification on the speciation of metals in seawater, Oceanography, 2009, vol. 22, pp. 72–85.

    Article  Google Scholar 

  29. Mills, K.C., Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides, London: Butterworths, 1974.

    Google Scholar 

  30. Nasar, A. and Shamsuddin, M., An investigation of the thermodynamic properties of cadmium sulfide, Thermochim. Acta, 1992, vol. 197, pp. 373–380.

    Article  Google Scholar 

  31. Oelkers, E.H., Bénézeth, P., and Pokrovski, G.S., Thermodynamic databases for water-rock interaction, In Thermodynamics and Kinetics of Water-Rock Interaction, Rev. Mineral. Geochem., 2009, vol. 70, pp. 1–46.

  32. Paalman, M.A.A., van der Weijden, C.H., and Loch, J.P.G., Sorption of Cd on suspended matter under estuarine conditions; competition and complexation with major seawater ions, Water. Air. Soil Pollut., 1994, vol. 73, pp. 49–60.

    Article  Google Scholar 

  33. Pokrovsky, G.S. and Dubessy, J., Stability and abundance of the trisulfur radical ion \({\text{S}}_{3}^{ - }\) in hydrothermal fluids, Earth Planet. Sci. Lett., 2015, vol. 411, pp. 298–309.

    Article  Google Scholar 

  34. Pokrovsky, O.S., Pokrovski, G.S., and Feurtet-Mazel, A., A structural study of cadmium interaction with aquatic microorganisms, Environ. Sci. Technol., 2008, vol. 42, pp. 5527–5533.

    Article  Google Scholar 

  35. Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Leuz, A.-K., Sjoberg, S., and Wanner, H., Chemical speciation of environmentally significant metals with inorganic ligands. Part 4: The Cd2+ + OH, Cl, \({\text{CO}}_{3}^{{2 - }},{\text{ SO}}_{4}^{{2 - }},\) and \({\text{PO}}_{4}^{{3 - }}\) systems (IUPAC Technical Report), Pure Appl. Chem., 2011, vol. 83, pp. 1163–1214.

    Article  Google Scholar 

  36. Robie, R.A. and Hemingway, B.S., Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at high temperatures., U. S. Geol. Surv. Bull., 1995, no. 2131.

  37. Rudnick, R.L. and Gao, S., Composition of the continental crust, In Treatise on Geochemistry, 2nd Edition, Holland H.D. and Turekian, K. K., Eds., Elsevier, Oxford, 2014, pp. 1–51.

    Google Scholar 

  38. Ryzhenko, B.N., Bryzgalin, O.V., Artamkina, I.Y., Spasennykh, M.Y., and Shapkin, A.L., An electrostatic model for the electrolytic dissociation of inorganic substances dissolved in water, Geochem. Int., 1985, vol. 22, pp. 138–144.

    Google Scholar 

  39. Schafer, H., Chemische Transportreaktionen. Der Transport Anorganischer Stoffe Uber Die Gasphase und Seine Anwendungen, Weinheim/Bergstr: Verlag Chemie, 1962.

  40. Schulte, M.D., Shock, E.L., and Wood, R.H., The temperature dependence of the standard-state thermodynamic properties of aqueous nonelectrolytes. Geochim. Cosmochim. Acta, 2001, vol. 65, pp. 3919–3930.

    Article  Google Scholar 

  41. Schwartz, M.O., Cadmium in zinc deposits: economic geology of a polluting element, Int. Geol. Rev., 2000, vol. 42, pp. 445–469.

    Article  Google Scholar 

  42. Shi, W., Zhao, X., Han, Y., Che, Z., Chai, X., and Liu, G., Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety, Sci. Rep., 2016, vol. 6, p. 20197.

    Article  Google Scholar 

  43. Shvarov, Y.V., HCh: New potentialities for the thermodynamic simulation of geochemical systems offered by windows, Geochem. Int., 2008, vol. 46, pp. 834–839.

    Article  Google Scholar 

  44. Shvarov, Y.V., A suite of programs, OptimA, OptimB, OptimC, and OptimS compatible with the Unitherm database, for deriving the thermodynamic properties of aqueous species from solubility, potentiometry and spectroscopy measurements, Appl. Geochem., 2015, vol. 55, pp. 17–27.

    Article  Google Scholar 

  45. Ste-Marie, J., Torma, A.E., and Gubeli, A.O., The stability of thiocomplexes and solubility products of metal sulfides I. Cadmium sulfide, Can. J. Chem., 1964, vol. 42, pp. 662–668.

    Article  Google Scholar 

  46. Stockdale, A., Tipping, E., Lofts, S., and Mortimer, R.J.G., Effect of ocean acidification on organic and inorganic speciation of trace metals, Environ. Sci. Technol., 2016, vol. 50, pp. 1906–1913.

    Article  Google Scholar 

  47. Suleimenov, O.M. and Krupp, R.E., Solubility of hydrogen sulfide in pure water and in NaCl solutions, from 20 to 320°C and at saturation pressures, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 2433–2444.

    Article  Google Scholar 

  48. Suleimenov, O.M. and Seward, T.M., A spectrophotometric study of hydrogen sulphide ionisation in aqueous solutions to 350°C, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 5187–5198.

    Article  Google Scholar 

  49. Tagirov, B.R. and Seward, T.M., A spectrophotometric study of hydrogen sulphide ionisation in aqueous solutions to 350°C, Geochim. Cosmochim. Acta, 2010, vol. 61, pp. 5187–5198.

    Google Scholar 

  50. Teng, F.-Z., Dauphas, N., and Watkins, J.M., Non-Traditional stable isotopes: Retrospective and perspective, Rev. Mineral. Geochem., 2017, vol. 82, pp. 1–26.

    Article  Google Scholar 

  51. Truche, L., Bazarkina, E.F., Barre, G., Thomassot, E., Berger, G., Dubessy, J., and Robert, P., The role of S3 - ion in thermochemical sulphate reduction: geological and geochemical implications, Earth Planet. Sci. Lett., 2014, vol. 396, pp. 190–200.

    Article  Google Scholar 

  52. Urabe, T., Partition of cadmium and manganese between coexisting sphalerite and galena from some Japanese epithermal deposits, Mineral. Deposita (Berl.), 1977, vol. 12, pp. 319–330.

    Google Scholar 

  53. Van Hövell tot Westerflier, S.W.F.M., Kolar, Z., Binsma, J.J.M., Stein, H.N. and Vandecasteele, C. Solubility of particulate cadmium sulfide at pH = 1–14: A radiotracer study, J. Radioanal. Nucl. Chem., 1987, vol. 111, pp. 305–317

  54. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., and Nuttall, R.L., The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C22 organic substances in SI units, J. Phys. Chem. Ref. Data, 1982, vol. 11.

  55. Wang, F. and Tessier, A., Cadmium complexation with bisulfide, Environ. Sci. Technol., 1999, vol. 33, pp. 4270–4277.

    Article  Google Scholar 

  56. Wang, F. and Tessier, A., Zero-valent sulfur and metal speciation in sediment porewaters of freshwater lakes, Environ. Sci. Technol., 2009, vol. 43, pp. 7252–7257.

    Article  Google Scholar 

  57. WHO, Guidelines for Drinking-water Quality, 4th Edition, Geneva: WHO Press, 2011.

    Google Scholar 

  58. Xu, Y. and Morel, M.M., Cadmium in Marine Phytoplankton. In Cadmium: From Toxicity to Essentiality Metal Ions in Life Science, Sigel, A., Sigel, H., and Sigel, R.K.O., New York: Springer, 2013, pp. 509–528.

  59. Yang, J., Li, Y., Liu, S., Tian, H., Chen, C., Liu, J., and Shi, Y., Theoretical calculations of Cd isotope fractionation in hydrothermal fluids, Chem. Geol., 2015, vol. 391, pp. 74–82.

    Article  Google Scholar 

  60. Zhang, J.-Z. and Millero, F.J., Investigation of metal sulfide complexes in sea water using cathodic stripping square wave voltammetry, Anal. Chim. Acta, 1994, vol. 284, pp. 497–504.

    Article  Google Scholar 

  61. Zhao, Y., Li, Y., Matthias, W., Jang, J., Sarret, G., Cheng, Q., Liu, J., and Shi, Y., Theoretical isotope fractionation of cadmium during complexation with organic ligands, Chem. Geol., 2021, vol. 571, p. 120178.

    Article  Google Scholar 

  62. Zhu, C., Wen, H., Zhang, Y., Liu, Y., and Wei, R., Isotopic geochemistry of cadmium: A review, Acta Geol. Sin., 2015, vol. 89, pp. 2048–2057.

    Article  Google Scholar 

  63. Zhu, C., Wen, H., Zhang, Y., Yin, R., and Cloquet, C., Cd isotope fractionation during sulfide mineral weathering in the Fule Zn–Pb–Cd deposit, Yunnan Province, Southwest China, Sci. Total Environ., 2018, vol. 616–617, pp. 64–72.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Nadezhda D. Shikina, Nina N. Baranova, Liudmila A. Koroleva, Gleb S. Pokrovski, Nikolay N. Akinfiev, Odile Robach, and Jean-Louis Hazemann are acknowledged for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Bazarkina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazarkina, E.F., Zotov, A.V., Chareev, D.A. et al. Cadmium Behavior in Sulfur-bearing Aqueous Environments: Insight from CdS Solubility Measurements at 25–80°C. Geol. Ore Deposits 65, 28–43 (2023). https://doi.org/10.1134/S1075701523010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701523010038

Keywords:

Navigation