Skip to main content
Log in

Geology, Mineralogy, Geochemistry, and Formation Conditions of the Tukan Gold Deposit, Khudolaz Trough, South Urals

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The mineralogy and geochemistry of rocks of the Tukan gold deposit (quartz veins, dolerite, gabbrodiorite) have been studied in depth. The deposit is one of numerous small gold–quartz locations in the Khudolaz trough of the West Magnitogorsk zone. The morphology and composition of native gold were studied using an Axioskop 40A optical microscope and Tescan Vega 3 and JEOL-6390LV scanning electron microscopes. The chemical composition of rocks was determined by the X-ray fluorescence (Carl Zeiss VRA-30) and atomic emission (Shimadzu ICPE-9000) analyses. Fluid inclusions were examined using a Linkam TMS-600 heating-freezing stage equipped with an Olympus BX51 optical microscope and the Link-System 32 DV-NC software. The composition vapor phase in fluid inclusions was determined by Raman spectroscopy (Horiba LabRam HR800 Evolution). Gold-bearing quartz veins and dolerites cutting the gabbrodiorite intrusion of the Khudolaz Complex are associated with near-meridional strike-slip faults. Native gold various in morphology is hosted in fractures in quartz veins and altered dolerites. The composition of gold is stable, with an average fineness of 871 ± 8.3‰. Fluid inclusion study in gold-bearing quartz revealed that gold was precipitated at a temperature no less than 186–230°С from fluid with a salinity of 4–8 wt % NaCl equiv. The presence of СО2, N2, and CH4 was identified in the vapor phase of fluid inclusions. Dolerite and gabbrodiorite hosting gold-bearing veins contain sulfides (pyrite, pyrrhotite, chalcopyrite, pentlandite, violarite) and sulfoarsenides (cobaltite and its analogs), as well as minerals of Ag (hessite) and Pb (kuranakhite and phases similar in composition to minerals of the dugganite group and burckhardtite).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Bodnar, R.J. and Vityk, M.O., Interpretation of microthermometric data for H 2 O–NaCl fluid inclusions, Fluid Inclusions in Minerals: Methods and Applications, Blacksburg: Virginia Tech, 1994, pp. 117–130.

    Google Scholar 

  2. Borisenko, A.S., The cryometric analysis of salt composition of fluid inclusions, Ispol’zovanie metodov termobarogeokhimii pri poiskakh i izuchenii rudnykh mestorozhdenii (The Application of Thermobarogeochemistry Methods for Ore Deposit Prospecting), Moscow: Nedra 1982, pp. 37–46.

    Google Scholar 

  3. Buchkovskii, E.S., Perminov, G.M., Krestinin, B.A., Karavaev, I.N., and Petrov, Yu.N., Assessment of the Ni potential of Basic Intrusions of the Khudolaz Syncline. Searches for copper-nickel sulfide ores on a Scale 1 : 50 000. Report, Ufa: GosGeolPhond, 1974, Vol. 1.

  4. Burke, E.A.J., Raman microspectrometry of fluid inclusions, Lithos, 2001, vol. 55, nos. 1–4, pp. 139–158.

    Article  Google Scholar 

  5. Damdinov, B.B., Mineral types of gold deposits and regularities of their localization in southeastern East Sayan, Geol. Ore Deposits, 2019, vol. 61, no. 2, pp. 118–132.

    Article  Google Scholar 

  6. Etschmann, B., Pring, A., Putnis, A., Grguric, B.A., and Studer, A., A kinetic study of the exsolution of pentlandite (Ni, Fe)9S8 from the monosulfide solid solution (Fe, Ni)S, Am. Mineral., 2004, vol. 89, no. 1, pp. 39–50.

    Article  Google Scholar 

  7. Fershtater, G.B., Paleozoiskii intruzivnyi magmatism Srednego i Yuzhnogo Urala (Paleozoic Intrusive Magmatism of the Middle and South Urals), Yekaterinburg, RIO UrO RAN, 2013.

  8. Gaines, R.V., Leavens, P.B., and Nelen, J.A., Burckhardtite, a new silicate-tellurite from Mexico, Am. Mineral., 1979, vol. 64, nos. 3–4, pp. 355–358.

    Google Scholar 

  9. Gas’kov, I.V., Major impurity elements in native gold and their association with gold mineralization settings in deposits of Asian folded areas, Russ. Geol. Geophys., 2017, vol. 58, no. 9, pp. 1080–1092.

    Article  Google Scholar 

  10. Hurai, V., Huraiova, M., Slobodnik, M., Thomas, R., Geofluids. Developments in Microthermometry, Spectroscopy, Thermodynamics, and Stable Isotopes, Amsterdam: Elsevier, 2015.

    Google Scholar 

  11. Kazakov, P.V. and Salikhov, D.N., Mineral Resources of the Republic of Bashkortostan (Placer Gold), Ufa: Gilem Publ., 2006, vol. 2.

    Google Scholar 

  12. Kim, A.A., Zayakina, N.V., and Makhotko, V.F., Kuksite Pb3Zn3Te6+O6(PO4)2 and cheremnykhite Pb3Zn3Te6+O6(VO4)2—new tellurates from the Kuranakh gold deposit (Central Aldan, southern Yakutia), Zap. Vsesoyuz. Mineral. O-va, 1990, vol. 119, no. 5, pp. 50–57.

    Google Scholar 

  13. Kondratieva, L.A., Anisimova, G.S., and Kardashevskaia, V.N., Types of tellurium mineralization of gold deposits of the Aldan Shield (Southern Yakutia, Russia), Minerals, 2021, vol. 11, no. 7, p. 698.

    Article  Google Scholar 

  14. Kuvaevskii, Yu.L., Kraev, Yu.P., and Kuvaevskaya, N.D., Geological Structure of the Region of the Middle Reaches of the Khudolaz River. Report of the Koltuban Geological Survey Team for 1959–1960 Ufa: GosGeolFond, 1961, Vol. 1.

  15. Lam, A.E. and Groat, L.A., The crystal structure of dugganite, Pb3Zn3Te6+As2O14, Can. Mineral., 1998, vol. 36, pp. 823–830.

    Google Scholar 

  16. Maslov, V.A. and Artyushkova, O.V., Stratigrafiya i korrelyatsiya devonskikh otlozhenii Magnitogorskoi megazony Yuzhnogo Urala (Stratigraphy and Correlation of Devonian Deposits of the Magnitogorsk Megazone of the South Urals), Ufa: DesignPoligrafService, 2010.

  17. Mills, S.J., Kampf, A.R., Kolitsch, U., Housley, R.M., and Raudsepp, M., The crystal chemistry and crystal structure of kuksite, Pb3Zn3Te6+P2O14, and a note on the crystal structure of yafsoanite, (Ca, Pb)3Zn(TeO6)2, Am. Mineral., 2010, vol. 95, no. 7, pp. 933–938.

    Article  Google Scholar 

  18. Mironova, O.F., Naumov, V.B., and Salazkin, A.N., Nitrogen in Mineral-Forming Fluids. Gas chromatography determination on fluid inclusions in minerals, Geochem. Int., 1992, vol. 7, pp. 979–991.

    Google Scholar 

  19. Petrovskaya, N.V., Samorodnoe zoloto (Native Gold), Moscow: Nauka, 1973.

  20. Prieto, A.C., Guedes, A., Doria, A., Noronha, F., and Jimenez, J., Quantitative determination of gaseous phase compositions in fluid inclusions by Raman microspectrometry, Spectroscop. Lett., 2012, vol. 45, no. 2, pp. 156–160.

    Article  Google Scholar 

  21. Puchkov, V.N., Geologiya Urala i Priural’ya (aktual’nye voprosy stratigrafii, tektoniki, geodinamiki, i metallogenii (Geology of the Urals and Cis-Urals (Actual Problems of Stratigraphy, Tectonics, Geodynamics and Metallogeny), Ufa: DesignPoligraphService, 2010.

  22. Rakhimov, I.R., Vishnevskii, A.V., and Saveliev, D.E., Geochemical evolution of PGE-sulfide mineralization of the Khudolaz differentiated complex in the South Urals: The role of R-factor and hydrothermal alteration, Ore Geol. Rev., 2021, vol. 138, no. 11, p. 104411.

    Article  Google Scholar 

  23. Rebetsky, Yu.L., Sim, L.A., and Marinin, A.V., Ot zerkal skol’zheniya k tektonicheskim napryazheniyam. Metody i algoritmy (From Glide Mirrors to Tectonic Stresses. Methods and Algorithms), Moscow: Geos, 2017.

  24. Salikhov, D.N. and Pshenichnyi, G.N., Magmaizm i orudeneniye zony ranneikonsolidatsii Magnitogorskoi evgeosinklinali (Magmatism and Mineralization of the Early Consolidation Zone of the Magnitogorsk Eugeosyncline), Ufa: BFAN SSSR, 1984.

  25. Salikhov, D.N. and Berdnikov, P.G., Magmatism i mineralizatsiya Pozdnego Paleozoya Magnitogorskogo meganticlinoriya (Late Paleozoic Magmatism and Mineralization of the Magnitogorsk Megasynclinorium) Ufa: BFAN USSR, 1985.

  26. Salikhov, D.N., Kovalev, S.G., Belikova, G.I., and Berdnikov, P.G., Poleznye iskopaemye Respubliki Bashkortostan (zoloto) (Minerals of the Republic of Bashkortostan (Gold)), Ufa: Ecology Publ., 2003, Vol. 1.

  27. Salikhov, D.N., Kholodnov, V.V., Puchkov, V.N., and Rakhimov, I.R., Magnitogorskaya zona Yuzhnogo Urala v Pozdnem Paleozoe: magmatizm, fluidnyi rezhim, metallogeniya, geodinamika (Magnitogorsk Zone of the South Urals at the Late Paleozoic: Magmatism, Fluid Regime, Metallogeny, Geodynamics), Moscow: Nauka Publ, 2019.

  28. Seravkin, I.B., Znamensky, S.E., and Kosarev, A.M., Razryvnaya tektonika i rudonosnost’ Bashkirskogo Zaural’ya (Fracture Tectonics and Ore Content of the Bashkir Trans-Urals), Ufa: Poligrafkombinat Publ., 2001.

  29. Shaparenko, E., Gibsher, N., Tomilenko, A., Sazonov, A., Bul’bak, T., Ryabukha, M., Khomenko, M., Silyanov, S., Nekrasova, N., and Petrova, M., Ore-bearing fluids of the Blagodatnoye gold deposit (Yenisei Ridge, Russia): results of fluid inclusion and isotopic analyses, Minerals, 2021, vol. 11, no. 10, p. 1090. https://doi.org/10.3390/min11101090

    Article  Google Scholar 

  30. Sher, S.D., Metallogeniya zolota (Evraziya, Afrika, Yuzhnaya Amerika) (Metallogeny of Gold (Eurasia, Africa, South America), Moscow: Nedra, 1974.

  31. Snachev, A.V., Snachev, V.I., Rykus, M.V., Savel’ev, D.E., Bazhin, E.A., and Ardislamov, F.R., Geologiya, petrogeokhimiya, i rudonosnost’ uglerodistykh otlozhenii Yuzhnogo Urala (Geology, Petrogeochemistry and Ore Content of Carbonaceous Deposits of the Southern Urals), Ufa: Design Press, 2012.

  32. Wilkinson, J.J., Fluid inclusions in hydrothermal ore deposits, Lithos, 2001, vol. 55, pp. 229–272.

    Article  Google Scholar 

  33. Williams, S.A., Khinite, parakhinite, and dugganite, three new tellurates from Tombstone, Arizona, Am. Mineral., 1978, vol. 63, pp. 1016–1019.

    Google Scholar 

  34. Znamenskii, S.E. and Znamenskaya, N.M., Classification of gold deposits of the east slope of the Southern Urals, Geol. Sb., 2009, no. 8, pp. 177–186.

  35. Znamenskii, S.E., Strukturnye usloviya formirovaniya kollizionnykh mestorozhdenii zolota vostochnogo sklona Yuzhnogo Urala (Structural Conditions for the Formation of Collisional Gold Deposits on the Eastern Slope of the Southern Urals), Ufa: Gilem Publ, 2009.

Download references

Funding

This work was carried out in the framework of the State Assignment of Institute of Geology, Ufa Federal Research Center, Russian Academy of Sciences (no. FMRS-2022-0012) and Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences (no. 0393-2016-0020, state registration no. АААА-А18-118052590029-6). The fluid-inclusion study was carried out in the framework of a state contract to the Institute of Mineralogy, South Ural Federal Research Center Mineralogy and Geoecology, Ural Branch, Russian Academy of Sciences (no. 075-00880–2PR). Raman spectroscopy performed at the Geoanalitik Research Center was supported by a state order to the Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences (project no. AAAA-A18-118053090045-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Rakhimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Baksheev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhimov, I.R., Saveliev, D.E., Shagalov, E.S. et al. Geology, Mineralogy, Geochemistry, and Formation Conditions of the Tukan Gold Deposit, Khudolaz Trough, South Urals. Geol. Ore Deposits 64 (Suppl 2), S141–S155 (2022). https://doi.org/10.1134/S1075701522100063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701522100063

Keywords:

Navigation