Skip to main content
Log in

High-Temperature Behavior of the CuMo3O10⋅H2O Compound

  • MINERAL CRYSTALLOGRAPHY
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

CuMo3O10⋅H2O crystals have been obtained by hydrothermal synthesis as a result of reaction between (NH4)6Mo2O24⋅4H2O and Cu(CH3COO)2 at 220°C for 7 days. According to X-ray powder diffraction data in a wide temperature range, the studied phase is stable within the range from –180 to 300°С. Its thermal expansion is anisotropic, and thermal expansion coefficients calculated at T = 100°С are αa = 28.5, αb = 6.1, and αc = 13.3°С–1. Structural changes have been tracked by the structure refinement method based on single-crystal X-ray diffraction data obtained at different temperatures. Thermal expansion anisotropy is related to the chain-structure type and angle deformations caused by variations in interatomic angles in the CuO6 octahedron and in interpolyhedral angles between the copper octahedron and trimolybdate chains. The high-temperature behavior of CuMo3O10⋅H2O is compared with that of chemically similar copper molybdates such as lindgrenite, szenicsite, and cupromolybdite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Agilent Technologies. CrysAlisPro, Version 1.171.36.20, (Release 27-06-2012), Santa Clara, 2012.

  2. Bruker-AXS. Topas v4.2: General Profile and Structure Analysis Software for Powder Diffraction Data, Karlsruhe, 2009.

  3. Burns, P.C. and Hawthorne, F.C., Coordination geometry pathways in Cu2+ oxysalt minerals, Can. Mineral., 1995, vol. 33, pp. 889–905.

    Google Scholar 

  4. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., OLEX: a complete structure solution, refinement and analysis program, J. Appl. Cryst., 2009, vol. 42, pp. 339–341.

    Article  Google Scholar 

  5. Filatov, S.K., Rybin, D.S., Krivovichev, S.V., and Vergasova, L.P., Thermal expansion of new arsenate minerals, bradaczekite, NaCu4(AsO4)3, and urusovite, Cu(AsAlO5), Geol. Ore Deposits, 2009, vol. 51, no. 8, pp. 827–832.

    Article  Google Scholar 

  6. Ismagilova, R.M., Zhitova, E.S., Zolotarev, A.A., and Krivovichev, S.V., Jahn-Teller distortion and thermal expansion anisotropy: temperature-dependent behavior of lindgrenite, Cu3(MoO4)2(OH)2, szenicsite, Cu3(MoO4)(OH)4, and cupromolybdite, Cu3O(MoO4)2, Phys. Chem. Mineral., 2019, vol. 46, no. 5, pp. 437–447.

    Article  Google Scholar 

  7. Konieczny, P., Pelka, R., Grzesiak-Nowak, M., Szymanska, A., Lasocha, W., and Wasiutynski, T., Magnetic properties of transition metal molybdates, Acta Phys. Pol. A, 2014, vol. 126, no. 1, pp. 250–251.

    Article  Google Scholar 

  8. Langreiter, T. and Kahlenberg, V., TEV—A program for the determination of the thermal expansion tensor from diffraction data, Crystals, 2015, vol. 5, no. 1, pp. 143–153.

    Article  Google Scholar 

  9. Lasocha, W., Surga, W., Hodorowicz, S., and Schenk, H., Crystal structure of the fibrillar zinc trimolybdate ZnMo3O10⋅3.75H2O by powder diffraction methods, Cryst. Res. Technol., 1997, vol. 32, no. 3, pp. 455–462.

    Article  Google Scholar 

  10. Lysenko, A.B., Senchyk, G.A., Lukashuk, L.V., Domasevitch, K.V., Handke, M., Lincke, J., Krautscheid, H., Rusanov, E.B., Kräme, K.W., Decurtin, S., and Liu, S.H., Composition space analysis in the development of copper molybdate hybrids decorated by a bifunctional pyrazolyl/1,2,4-triazole ligand, Inorg. Chem., 2016, vol. 55, no. 1, pp. 239–250.

    Article  Google Scholar 

  11. Momma, K. and Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 2011, vol. 44, no. 6, pp. 1272–1276.

    Article  Google Scholar 

  12. Senchyk, G.A., Lysenko, A.B., Babaryk, A.A., Rusanov, E.B., Krautscheid, H., Neves, P., Valente, A.A., Gonçalves, I.S., Kramer, K.W., Liu, S.-X., Decurtins, S., and Domasevitch, K.V., Triazolyl-based copper–molybdate hybrids: From composition space diagram to magnetism and catalytic performance, Inorg. Chem., 2014, vol. 53, no. 19, pp. 10112–10121.

    Article  Google Scholar 

  13. Sheldrick, G.M., Crystal structure refinement with SHELX, Acta Crystallogr., 2015, vol. C71, pp. 3–8.

    Google Scholar 

  14. Surga, W. and Hodorowicz, S., Studies of fibrillar forms of Co(II) and Ni(II) trimolybdates, Pol. J. Chem., 1988, vol. 62, pp. 85–89.

    Google Scholar 

  15. Tian, C., Wang, E., Li, Y., Xu, L., Hu, C., and Peng, J., A novel three-dimensional inorganic framework: hydrothermal synthesis and crystal structure of CuMo3O10⋅H2O, Solid State Chem., 2004, vol. 177, pp. 839–843.

    Article  Google Scholar 

  16. Wang, H.-Y., Shi, T., and Chen, Y.-G., Synthesis, crystal structure and properties, Inorg. Chem. Commun., 2016, vol. 70, pp. 201–204.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.V. Krivovichev for valuable comments and help in interpreting the experimental data, and also to M.G. Krzhizhanovskaya for advice and assistance during the experiments.

Funding

The study was supported by the Russian Foundation for Basic Research (grant no. 20-35-90007) using the equipment of the Resource Centers of St. Petersburg State University X-ray Diffraction Research and Geomodel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Ismagilova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Maslennikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismagilova, R.M., Zhitova, E.S., Zolotarev, A.A. et al. High-Temperature Behavior of the CuMo3O10⋅H2O Compound. Geol. Ore Deposits 64, 676–686 (2022). https://doi.org/10.1134/S1075701522080062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701522080062

Keywords:

Navigation