Skip to main content

Main Features of the REE Metallogeny through Geological Time

Abstract

The distribution of rare earth element (REE) deposits and their resources through geological time has been analyzed. The analysis is based on data on 103 deposits distributed around the world with a resource estimate of at least 100  000 t of lanthanoid and yttrium oxides. The variability in the formation of significant REE accumulations through geological time is demonstrated by comparing supercontinent cycles based on the ore resources of different types and ages. In the Kenoran cycle, only one deposit was identified in which the REE resources quantitatively exceeded the specified limit: a modified paleoplacer with initially detrital U–REE mineralization. The placer type is also represented in the Amasian cycle, but by deposits with different ore specialization. Carbonatite, hypergene in carbonatites, syenite, and alkali-granitic types are represented by deposits in all other supercontinent cycles. Significant foidic-type deposits were formed in the Columbian, Rodinian, and Pangean cycles; subalkali-granitic type deposits were formed, in the Columbian and Rodinian cycles; and ion-adsorption orebodies are known only in the Amasian cycle. On the geological time scale, deposits of all types are distributed very unevenly. The maximum resources are estimated in deposits of the Rodinian cycle. The other cycles, not counting the extremely nonproductive Kenoran cycle, are 2–2.5 times inferior to the Rodinian cycle in this aspect. We have also analyzed the distribution in deposits of different types and ages of those light and heavy REE that are the most valuable on the world market. Deposits with a pronounced specialization in different groups of such REE have been identified. They occur in the sampling lists of deposits of all supercontinent cycles, except the Kenoran.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Adamas Intelligence. Rare earth elements: Market Issues and Outlook. Research Report, 2019. https://www.adamasintel.com/ (Accessed December 02, 2020).

  2. Afanas’ev, B.V., Mineral’nye resursy shchelochno-ul’traosnovnykh massivov Kol’skogo poluostrova (Mineral Resources of the Alkaline–Ultrabasic Massifs of the Kole Peninsula), St. Petersburg: “Roza vetrov”, 2011.

  3. Amores, S., Evolución Metalogenética de Complejos Carbonatiticos en Contexto Hipoabisal y Plutónico: Bonga y Monte Verde (Angola), PhD Thesis, Universitat de Barcelona, 2017.

  4. Andersen, A.K., Clark, J.G., Larson, P.B., and Donovan, J.J., REE fractionation, mineral speciation, and supergene enrichment of the Bear Lodge carbonatites, Wyoming, USA, Ore Geol. Rev., 2017, vol. 89, pp. 780–807.

    Article  Google Scholar 

  5. Andreoli, M.A.G., Smith, C.B., Watkeys, M., Moore, J.M., Ahwal, L.D., and Hart, R.J., The geology of the Steenkampskraal monazite deposit, South Africa: implications for REE–Th–Cu mineralization in charnockite–granulite terrains, Econ. Geol., 1994, vol. 89, pp. 994–1016.

    Article  Google Scholar 

  6. Arkhangel’skaya, V.V., Lagonskii, N.N., Usova, T.Yu., and Chistov, L.B., Rudy redkozemel’nykh metallov Rossii (Rare-Earth Metal Ores of Russia), Moscow: VIMS, 2006.

  7. Aseri, A.A., Rare-Metal Alkaline Granite from the Arabian Shield, Saudi Arabia, PhD Thesis, London: University of Western Ontario, 2020.

  8. Audi, G., Bersillon, O., Blachot, J., and Wapstra, A.H., The nubase evaluation of nuclear and decay properties, Nuclear Phys. A, 2003, vol. 729, no. 1, pp. 3–128.

    Article  Google Scholar 

  9. Balaram, V., Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact, Geosci. Front., 2019, vol. 10, no. 4, pp. 1285–1303.

    Article  Google Scholar 

  10. Balashov, Yu.A. and Glaznev, V.N., Cycles of alkaline magmatism, Geochem. Int., 2006, vol. 44, no. 3, pp. 274–285.

    Article  Google Scholar 

  11. Basson, I.J., Muntingh, J.A., Jellicoe, B.C., and Anthonissen, C.J., Structural interpretation of the Steenkampskraal monazite deposit, Western Cape, South Africa, J. Afr. Earth Sci., 2016, vol. 121, pp. 301–315.

    Article  Google Scholar 

  12. Bastos Neto, A.C., Pereira, V.P., Ronchi, L.H., de Lima, E.F., and Frantz, J.C., The world class Sn, Nb, Ta, F (Y, REE, Li) deposit and the massive cryolite associated with the albite-enriched facies of the madeira A-type granite, Pitinga mining district, Amazonas State, Brazil, Can. Mineral., 2009, vol. 47, pp. 1329–1357.

    Article  Google Scholar 

  13. Batapola, N.M., Dushyantha, N.P., Premasiri, H.M.R., Abeysinghe, A.M.K.B., Rohitha, L.P.S., Ratnayake, N.P., Dissanayake, D.M.D.O., K., Ilankoon, I.M.S.K., and Dharmaratne, P.G.R., A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka, J. Asian Earth Sci., 2020, vol. 200, 104475.

    Article  Google Scholar 

  14. Bauer, P.W. and Pollock, T.R., Compilation of Precambrian isotopic ages in New Mexico, New Mexico Bureau of Mines and Mineral Resources Open-File Report, 1993, vol. 389.

  15. Belov, S.V., Lapin, A.V., Tolstov, A.V., and Frolov, A.A., Minerageniya platformennogo magmatizma (trappy, karbonatity, kimberlity) (Metallogeny of Platform Magmatism: Traps, Carbonatites, and Kimberlites), Novosibirsk: SO RAN, 2008.

  16. Benaouda, R., Kraemer, D., Sitnikova, M., Goldmann, S., Schwarz-Schampera, U., Errami, A., Mouttaqi, A., and Bau, M., Discovery of high-grade REE–Nb–Fe mineralization associated with calciocarbonatite in South Morocco, Ore Geol. Rev., 2020, vol. 124.

  17. Berger, M., Geology and Mineralization of the Pajarita Mountain Layered Peralkaline Syenitic Pluton-Hosted REE–Zr Prospect, Mescalero Apache Reservation, New Mexico, MSc Thesis, Golden: Colorado School of Mines, 2018.

  18. Borst, A.M., Smith, M.P., Finch, A.A., and Estrade, G., Villanova-de-Denavent, C., Nason, P., Marquis, E., Horsburgh, N.J., Goodenough, K.M., Xu, C., Kynicky, J., and Geraki, K., Adsorption of rare earth elements in regolith-hosted clay deposits, Nature Commun., 2020, vol. 11, 4386.

    Article  Google Scholar 

  19. Broom-Fendley, S., Brady, A.E., Horstwood, M.S.A., Woolley, A.R., Mtegha, J., Wall, F., Dawes, W., and Gunn, G., Geology, geochemistry and geochronology of the Songwe Hill carbonatite, Malawi, J. Afr. Earth Sci., 2017, vol. 134, pp. 10–23.

    Article  Google Scholar 

  20. Bykhovskii, L.Z., Arkhangel’skaya, V.V., Tigunov, L.P., and Anufrieva, S.I., Prospects for the development of the mineral resource base and the development of scandium production in Russia and other CIS countries, Mineral. Resur. Rossii. Ekonom. Upravl., 2007, no. 5, pp. 27–32.

  21. Cahen, L., Snelling, N.J., Delhal, J., and Vail, J.R., The Geochronology and Evolution of Africa, Oxford: Clarendon Press, 1984.

    Google Scholar 

  22. Chakhmouradian, A.R. and Zaitsev, A.N., Rare earth mineralization in igneous rocks: sources and processes, Elements, 2012, vol. 8, no. 5, pp. 347–353.

    Article  Google Scholar 

  23. Chandler, R. and Spandler, C., The igneous petrogenesis and rare metal potential of the peralkaline volcanic complex of the southern peak range, central Queensland, Australia, Lithos, 2020, vol. 358-359.

  24. Chebotarev, D.A., Petrogenesis and Niobium–Rare-Earth Element Mineralization of the Chuktukon Alkaline Ultrabasic Carbonatite Massif, Western Siberian Platform, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, Novosibirsk: 2020.

  25. Chikanda, F., Otake, T., Ohtomo, Y., Ito, A., Yokoyama, T.D., and Sato, T., Magmatic-hydrothermal processes associated with rare earth element enrichment in the Kangankunde carbonatite complex, Malawi, Minerals, 2019, vol. 9, no. 7, 442.

    Article  Google Scholar 

  26. Ciuculescu, T., Foo, P., Gowans, R., Hawton, K., Jacobs, C., and Spooner, J., Technical Report Disclosing the Results of the Feasibility Study on the Nechalacho Rare Earth Elements Project, Toronto: Micon Int. Ltd, 2013. www.avalonadvancedmaterials.com/_resources/projects/may_20-13_ni43_report.pdf (Accessed May 20, 2021).

  27. Cocker, M.D., Lateritic, supergene rare earth element (REE) deposits, 48 th Forum on the Geology of Industrial Minerals, Arizona Geol. Surv. Spec. Pap., 9, pp. 1–18.

  28. Cohen, B.E., Knesel, K.M., Vasconcelos, P.M., and Schellart, W.P., Tracking the Australian plate motion through the Cenozoic: constraints from 40Ar/39Ar geochronology, Tectonics, 2013, vol. 32, no. 5, pp. 1371–1383.

    Article  Google Scholar 

  29. Connelly, N.G., Damhus, T., Hartshorn, R.M., and Hutton, A.T., Nomenclature of Inorganic Chemistry–-IUPAC Recommendations 2005, Cambridge: Royal Society of Chemistry, 2005.

    Google Scholar 

  30. Costi, H.T., Dall’agnol, R., and Moura, C.A.V., Geology and Pb-Pb geochronology of Paleoproterozoic volcanic and granitic rocks of Pitinga province, Amazonian Craton, northern Brazil, Int. Geol. Rev., 2000, vol. 42, no. 9, pp. 832–849.

    Article  Google Scholar 

  31. Courtney-Davies, L., Ciobanu, C.L., Tapster, S.R., Cook, N.J., Ehrig, K., Crowley, J.L., Verdugo-Ihl, M.R., Wade, B.P., and Condon, D.J., Opening the magmatic-hydrothermal window: high-precision U–Pb geochronology of the Mesoproterozoic Olympic Dam Cu–U–Au–Ag deposit, South Australia, Econ. Geol., 2020, vol. 115, pp. 1855–1870.

    Article  Google Scholar 

  32. Crossland Uranium Mines Ltd. Charley Creek Rare Earths Project Scoping Study Results, ASX Release, 2013. http://www.asx.com.au/asxpdf/20130415/pdf/42f7v06gx1svy4.pdf (accessed March 16, 2021).

  33. Daigle, P., Technical Report on the Clay-Howells Fe-REE Project, Ontario, Canada, to the Rare Earth Metals Inc, Toronto: Tetra Tech., 2011. http://www.canadarareearth.com/ upload/documents/technical-report-on-the-clay-howells.pdf (Accessed December 15, 2020)

  34. Daigle, P., Technical Report and Resource Estimate of the Lavergne–Springer REE Project, Ontario, Canada, to the Rare Earth Metals Inc., Toronto: Tetra Tech. 2012. http:// www.canadarareearth.com/upload/documents/springer-technical-report.pdf (Accessed December 20, 2020)

  35. Dalsin, M.L., The Mineralogy, Geochemistry, and Geochronology of the Wicheeda Carbonatite Complex, British Columbia, MSc Thesis, Vancouver: University of British Columbia, 2013.

  36. David, J., Dion, C., Goutier, J., Roy, P., Bandyayera, D., Legault, M., and Rhéaume, P., Datations U-Pb Effectuées Dans la Sous-Province de l’Abitibi à la Suite des Travaux de, 2004–2005, Québec: Ministère des Ressources naturelles et de la Faune, 2006, RP 2006-04.

  37. Deady, E., Lacinska, A., Goodenough, K.M., Shaw, R.A., and Roberts, N.M.W., Volcanic-derived placers as a potential resource of rare earth elements: the Aksu Diamas case study, Turkey, Minerals, 2019, vol. 9, no. 4, 208.

    Article  Google Scholar 

  38. Deng, M., Xu, C., Song, W., Tang, H., Liu, Y., Zhang, Q., Zhou, Y., Feng, M., and Wei, C., REE mineralization in the Bayan Obo deposit, China: evidence from mineral paragenesis, Ore Geol. Rev., 2017, vol. 91, pp. 100–109.

    Article  Google Scholar 

  39. Dostal, J., Rare earth element deposits of alkaline igneous rocks, Resources, 2017, vol. 6, no. 3, 34.

    Article  Google Scholar 

  40. Downes, H., Wall, F., Demeny, A., and Szabo, C., Continuing the carbonatite controversy, Mineral. Mag., 2012, vol. 76, pp. 255–257.

    Article  Google Scholar 

  41. Downes, P.J., Dunkley, D.J., Fletcher, I.R., McNaugh-ton, N.J., Rasmussen, B., Jaques, A.L., Verrall, M., and Sweetapple, M.T., Zirconolite, zircon and monazite-(Ce) U–Th–Pb age constraints on the emplacement, deformation and alteration history of the Cummins range carbonatite complex, Halls Creek orogen, Kimberley region, Western Australia, Mineral. Petrol., 2016, vol. 110, nos. 2–3, pp. 199–222.

    Article  Google Scholar 

  42. Druecker, M. and Simpson, R.G., Technical Report on the Sarfartoq Project, West Greenland, Prepared for Hudson Resources Inc., Vancouver: Damien Consultants GeoSim Services, 2012. https://www.sedar.com/(Accessed December 20, 2020)

  43. Drysdall, A.R. and Douch, C.J., Nb–Th–Zr mineralization in microgranite-microsyenite at Jabal Tawlah, Midyan region, Kingdom of Saudi Arabia, J. Afr. Earth Sci., 1986, vol. 4, pp. 275–288.

    Google Scholar 

  44. Duhamel, I., Caractérisation des Sources D’uranium à l’Archéen: Mécanismes de Genèse des Gisements D’uranium les Plus Anciens (3,0 à 2,2 Ga) et des Préconcentrations Uranifères Paléoprotérozoïques, PhD Thesis, Nancy: Université Henri Poincaré, 2010.

  45. Dushyantha, N., Batapola, N., Ilankoon, I.M.S.K., Rohitha, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., and Dissanayake, K., The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production, Ore Geol. Rev., 2020, vol. 122, 103521.

    Article  Google Scholar 

  46. Eggert, R., Wadia, C., Anderson, C., Bauer, D., Fields, F., Meinert, F., and Taylor, P., Rare earths: market disruption, innovation, and global supply chains, Annu. Rev. Environ. Res., 2016, vol. 41, pp. 199–222.

    Article  Google Scholar 

  47. Ehrig, K., McPhie, J., and Kamenetsky, V.S., Geology and mineralogical zonation of the Olympic Dam iron oxide Cu–U–Au–Ag deposit, South Australia, Geology and Genesis of Major Copper Deposits and Districts of the World, A Tribute to Richard H. Sillitoe, Soc. Econ. Geol. Spec. Publ., 2012, vol. 16, 237–267.

    Google Scholar 

  48. Elsner, H., Heavy Minerals of Economic Importance. Assessment Manual, Hannover: BGR, 2010.

    Google Scholar 

  49. Ernst, R.E., Large Igneous Provinces, Cambridge: University Press, 2014.

    Book  Google Scholar 

  50. Fockema, P.D., The heavy mineral deposits north of Richards Bay, Mineral Deposits of Southern Africa. Geological Society of South Africa, Anhaeusser, C.R. and Maske, S., Eds., 1986, vol. 2, pp. 2301–2307.

    Google Scholar 

  51. Fosu, B.R., Ghosh, P., Chew, D.M., and Viladkar, S.G., Composition and U-Pb ages of apatite in the Amba Dongar carbonatite–alkaline complex, India, Geol. J., 2019, vol. 54, pp. 3438–3454.

    Article  Google Scholar 

  52. Frolov A.A., Tolstov A.V., Belov S.V. Karbonatitovye mestorozhdeniya Rossii (Carbonatite Deposits of Russia), Moscow: NIA-Priroda, 2003.

  53. Gambogi, J., Rare earths, Mineral Commodity Summaries, Reston: U.S. Geol. Surv., 2021, pp. 132–133.

    Google Scholar 

  54. Gambogi, J. and Ghalayini, Z.T., Thorium, Minerals Yearbook 2017, U.S. Geological Survey, 2020, pp. 77.1–77.5. www.usgs.gov/centers/nmic/thorium-statistics-and-information (Accessed May 07, 2021)

  55. Gandhi, S.S., Krogh, T.E., and Corfu, F., U-Pb zircon and titanite dates on two granitic intrusions of the Makkovik orogen and a peralkaline granite of the Red Wine intrusive complex, Central Labrador, Geol. Assoc. Can. Ann. Meeting, Abstract, St. John’s, Newfoundland, 1988, p. A42.

  56. Geo-Consult International (Pty) Ltd. Geological Report and Resource Estimate for the Glenover Carbonatite Project (Roodepoort, 2012). URL: https://galileoresources.com/wp-content/uploads/Glenover-Geological-and-Resource-Report-3-August-2012.pdf (Accessed December 20, 2020)

  57. Gerel, O., Majigsuren, Y., and Munkhtsengel, B., Rare earth deposits, Mineral Resources of Mongolia, Gerel, O., Pirajno, F., Batkhishig, B., Dostal, J., Eds., Singapore: Springer Nature, 2021, pp. 185–210.

    Book  Google Scholar 

  58. Giovannini, A.L., Bastos, NetoA.C., Porto, C.G., Pereira, V.P., Takehar, L., Barbanson, L., and Bastos, P.H.S., Mineralogy and geochemistry of laterites from the Morro dos Seis Lagos Nb (Ti, REE) deposit (Amazonas, Brazil), Ore Geol. Rev., 2017, vol. 88, pp. 461–480.

    Article  Google Scholar 

  59. Gladkochub, D.P., Donskaya, T.V., Sklyarov, E.V., Ko-tov, A.B., Vladykin, N.V., Pisarevsky, S.A., Larin, A.M., Salnikova, E.B., Saveleva, V.B., Sharygin, V.V., Starikova, A.E., Tolmacheva, E.V., Velikoslavinsky, S.D., Mazukabzov, A.M., Bazarova, E.P., Kovach, V.P., Zagornaya, N.Yu., Alymova, N.V., and Khromova, E.A., The unique Katugin rare-metal deposit (southern Siberia): constraints on age and genesis, Ore Geol. Rev., 2017, vol. 91, pp. 246–263.

    Article  Google Scholar 

  60. Golev, A., Scott, M., Erskine, P.D., Ali, S.H., and Ballantyne, G.R., Rare earths supply chains: current status, constraints and opportunities, Resources Policy, 2014, vol. 41, pp. 52–59.

    Article  Google Scholar 

  61. Goodenough, K.M., Schilling, J., Jonsson, E., Kalvig, P., Charles, N., Tuduri, J., Deady, E.A., Sadeghi, M., Schiellerup, H., Müller, A., Bertrand, G., Arvanitidis, N., Eliopoulos, D.G., Shaw, R.A., Thrane, K., and Keulen, N., Europe’s rare earth element resource potential: an overview of ree metallogenetic provinces and their geodynamic setting, Ore Geol. Rev., 2016, vol. 72, pp. 838–856.

    Article  Google Scholar 

  62. Goodenough, K.M., Wall, F., and Merriman, D., The rare earth elements: demand, global resources, and challenges for resourcing future generations, Nat. Resour. Res., 2018, vol. 27, no. 2, pp. 201–216.

    Article  Google Scholar 

  63. Graham, S., Lambert, D., and Shee, S., The petrogenesis of carbonatite, melonite, and kimberlite from the Eastern Goldfield Province, Yilgarn Craton, Lithos, 2004, vol. 76, pp. 519–533.

    Article  Google Scholar 

  64. Gronen, L.H., Sindern, S., Katzmarzyk, J.L., Bor-mann, U., Hellmann, A., Wotruba, H., and Meyer, F.M., Mineralogical and chemical characterization of Zr–REE–Nb ores from Khalzan Buregtei (Mongolia)—approaches to more efficient extraction of rare metals from alkaline granitoids, Minerals, 2019, vol. 9, Paper 217.

  65. Guarino, V., Wu, F.-Y., Lustrino, M., Melluso, L., Brotzu, P., Gomes, C.D.B., Ruberti, E., Tassinari, C.C.G., and Svisero, D.P., U–Pb ages, Sr–Nd- isotope geochemistry, and petrogenesis of kimberlites, kamafugites and phlogopite–picrites of the alto Paranaiba igneous province, Brazil, Chem. Geol., 2013, vol. 353, pp. 65–82.

    Article  Google Scholar 

  66. Guarino, V., Wu, F.-Y., Melluso, L., de Barros, Gomes, C., Tassinari, C.C.G., Ruberti, E., and Brilli, M., U–Pb ages, geochemistry, C–O–Nd–Sr–Hf isotopes and petrogenesis of the Catalao II carbonatitic complex (Alto Paranaiba igneous province, Brazil): implications for regional-scale heterogeneities in the Brazilian carbonatite associations, Int. J. Earth Sci. (Geol. Rundsch.), 2017, vol. 106, pp. 1963–1989.

    Google Scholar 

  67. Gupta, C.K. and Krishnamurthy, N., Extractive Metallurgy of the Rare Earths, CRC Press, 2005, p. 508.

    Google Scholar 

  68. Gursky, D.S., Esipchuk, K.Yu., Kalinin, V.I., Kulish, E.A., Nechaev, S.V., Tret’yakov, and Yu.I., Shumlyansky, V.A., Metallicheskie i nemetallicheskie poleznye iskopaemye Ukrainy. T. 1: Metallicheskie poleznye iskopaemye (Metallic and Non-Metallic Mineral Resources of Ukraine. Volume 1. Metallic Mineral Resources), Kiev-L’vov, Tsentr Evropy, 2005.

  69. Gysi, A.P., Williams-Jones, A.E., and Collins, P., Lithogeochemical vectors for hydrothermal processes in the strange lake peralkaline granitic REE–Zr–Nb deposit, Econ. Geol., 2016, vol. 111, pp. 1241–1276.

    Article  Google Scholar 

  70. Haley, J.T., 1.3 Ga Bimodal Volcanism in Southeastern Labrador: Fox Harbour, MSc Thesis. Memorial University of Newfoundland, 2014.

  71. Harmer, R.E. and Nex, P.A.M., Rare earth deposits of Africa, Episodes, 2016, vol. 39, no. 2, pp. 381–406.

    Article  Google Scholar 

  72. Harper, F., Wiid, G., Siegfried, P., Brown, J., Hall, M., Njowa, G., Vivier, J., Zietsman, R., and Duke, V., NI 43-101 Independent Technical Report on the Results of a Preliminary Feasibility Study on the Zandkopsdrift Rare Earth Element and Manganese By-Product Project in the Northern Cape Province of South Africa for Frontier Rare Earths, RSA: Venmyn Deloitte Ltd., 2015. https://frontierrareearths.com/wp-content/uploads/2015/06/June15-ITR-PFS-Zkd-SEDAR.pdf. (accessed March 17, 2021).

  73. Hastings Technology Metals Ltd. Yangibana Project: Definitive Feasibility Atudy Executive Summary, Perth, 2017. URL: https://hastingstechmetals.com/projects/yangibana (accessed 14.12.2020)

  74. Hedrick, J.B., Rare earths, Mineral Commodity Summaries, Reston: U.S. Geological Survey, 2001, pp. 130–131.

    Google Scholar 

  75. Hoatson, D.M., Jaireth, S., and Miezitis, Y., The Major Rare-Earth-Element Deposits of Australia: Geological Setting, Exploration, and Resources, Canberra: Geoscience Australia, 2011.

    Google Scholar 

  76. Holland, H.D., The oxygenation of the atmosphere and oceans, Philos. Trans. R. Soc. B: Biol. Sci., 2006, vol. 361, pp. 903–915.

    Article  Google Scholar 

  77. Hughes, J. and Christiansen, O., Rare earth mineralization of the Qeqertaasaq carbonatite complex, West Greenland, Trans. Inst. Mining and Metallurgy, Section B, 2011, vol. 120, no. 2, pp. 67–68.

    Google Scholar 

  78. Huston, D.L., Maas, R., Cross, A., Hussey, K.J., Mernagh, T.P., Fraser, G., and Champion, D.C., The Nolans Bore rare-earth element–phosphorus–uranium mineral system: geology, origin and post-depositional modifications, Mineral. Deposita, 2016, vol. 51, pp. 797–822.

    Article  Google Scholar 

  79. Jackson, N.J. and Douch, C.J., Jabal Hamra REE-mineralized silexite, Hijaz region, Kingdom of Saudi Arabia, J. Afr. Earth Sci., 1986, vol. 4, pp. 269–274.

    Google Scholar 

  80. Jaireth, S., Hoatson, D., and Miezitis, Y., Geological setting and resources of the major rare-earth element deposits in Australia, Ore Geol. Rev., 2014, vol. 62, pp. 72–128.

    Article  Google Scholar 

  81. Kalashnikov, A.O., Konopleva, N.G., Pakhomovsky, Ya.A., and Ivanyuk, G.Yu., Rare earth deposits of the Murmansk region, Russia—a review, Econ. Geol., 2016, vol. 111, pp. 1529–1559.

    Article  Google Scholar 

  82. Kamo, S.L., Krogh T.E., and Kumarapeli, P.S., Age of the Grenville dyke swarm, Ontario—Quebec: implications for the timing of Lapetan rifting, Can. J. Earth Sci., 1995, vol. 32, pp. 273–280.

    Article  Google Scholar 

  83. Kim, J.N., Han, R.Y., Zhao, L., Li, Q.L., and Kim, S.S., Study on the petrographic and SIMS zircon U-Pb geochronological characteristics of the magmatic rocks associated with the Jongju and Cholsan REE deposits in Nothern Korean Peninsula, Acta Petrol. Sinica, 2016, vol. 32, no. (10), pp. 3123–3138.

  84. Knoper, M.W., The Mesoproterozoic Steenkampskraal rare-earth element deposit in Namaqualand, South Africa, GSA Denver Annual Meeting, 2010, Paper No. 132–134.

  85. Kogarko, L.N. Alkaline magmatism and enriched mantle reservoirs: mechanisms, time, and depth of formation, Geochem. Int., 2006, vol. 44, no. 1, pp. 3–11.

    Article  Google Scholar 

  86. Kovalenko, V.I., Yarmolyuk, V.V., Andreeva, I.A., Ashikhmina, N.A., Kozlovsky, A.M., Kudryashova, E.A., Kuznetsov, V.A., Listratova, E.N., Lykhin, D.A., and Nikiforov, A.V., Tipy magm i ikh istochniki v istorii Zemli. Ch. 2. Redkometal’nyi magmatizm: assotsiatsii porod, sostav i istochniki magm, geodinamicheskie obstanovki formirovaniya (Types of Magmas and their Sources in the Earth’s History. Part 2. Rare-Metal Magmatism: Rock Associations, Composition, and Sources of Magmas, and Geodynamic Settings of their Formation), Moscow: IGEM RAN, 2006.

  87. Kovalenko, V.I., Yarmolyuk, V.V., Kovach, V.P., Sal’nikova, E.B., Kozlovskii, A.M., Kotov, A.B., and Khan-chuk, A.I., Multiple magma sources for the peralkaline granitoids and related rocks of the Khaldzan Buregte Group of massifs, Western Mongolia: isotopic (neodymium, strontium, and oxygen) and geochemical data, Petrology, 2004, vol. 12, no. 6, pp. 497–518.

    Google Scholar 

  88. Krogh, T.E., Davis, D.W., and Corfu, F., Precise U-Pb zircon and baddeleyite ages from the Sudbury area, The Geology and Ore Deposits of the Sudbury Structure, Pye, E.G., Naldrett, A.J., Giblin, P.E., Eds., Toronto: Ontario Geological Survey, 1984.

  89. Krumrei, T.V., Villa, I.M., Marks, M.A.W., and Markl, G., A 40Ar/39Ar and U/Pb isotopic study of the Ilimaussaq complex, south Greenland: implications for the 40K decay constant and for the duration of magmatic activity in a peralkaline complex, Chem. Geol., 2006, vol. 227, pp. 258–273.

    Article  Google Scholar 

  90. Lapin, A.V. and Tolstov, A.V., Oxiding and reducing stages of the formation of supergene zone after carbonatites and their ore potential, Geol. Rudn. Mestorozhd., 1991, vol. 33, no. 4, pp. 81–91.

    Google Scholar 

  91. Lapin, A.V., Tolstov, A.V., Ploshko, V.V., Chemizo-va, L.N., and Sorokina, T.I., Minerageniya kor vyvetrivaniya karbonatitov (Metallogeny of Carbonatite Weathering Crusts), Moscow: GEOS, 2011. 308 s.

  92. Laval, M., Johan, V., and Tourliere, B., La carbonatite de Mabounie: exemple de formation d’un gite residuel a pyrochlore, Chronique de la Recherche Miniere, 1988, no. 491, pp. 125–36.

  93. Lebedev, N.I., Mineral’no-syr’evye resursy Tuvy: kratkaya kharakteristika mestorozhdenii poleznykh iskopaemykh (Mineral–Raw Resources of Tuva::Brief Characteristics of Mineral Deposits), Moscow: “Akademiya Estestvoznaniya”, 2013.

  94. Li, Y.H.M., Zhao, W.W., and Zhou, M.F., Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model, J. Asian Earth Sci., 2017, vol. 148, pp. 65–95.

    Article  Google Scholar 

  95. Likhnikevich, E.G., Ozhogina, and E.G., Fatov, A.S., Mineralogical criteria for choice of technology of processing of rare-metal ores, Vestn. IG Komi NTs URO RAN, 2019, no. 4, pp. 42–48. https://doi.org/10.19110/2221-1381-2019-4-42-48

  96. Ling, X., Li, Q., Liu, Y., Yang, Y., Liu, Y., Tang, G., and Li, X., In situ sims Th–Pb dating of bastnaesite: constraint on the mineralization time of the Himalayan Mianning-Dechang rare earth element deposits, J. Analyt. Atomic Spectrom., 2016, vol. 31, pp. 1680–1687.

    Article  Google Scholar 

  97. Linnen, R.L., Samson, I.M., Williams-Jones, A.E., and Chakhmouradian, A.R., Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits, Treatise on Geochemistry, 2nd Edition, Holland, H.D. and Turekian, K.K., Amsterdam: Elsevier, 2014.

  98. Liu, Y. and Hou, Z., A synthesis of mineralization styles with an integrated genetic model of carbonatite–syenite-hosted REE deposits in the Cenozoic Mianning–Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China, J. Asian Earth Sci., 2017, vol. 137, pp. 35–79.

    Article  Google Scholar 

  99. Lomaev, V.G. and Serdyuk, S.S., Chuktukon Nb–REE deposit as the top priority object for the development of rare-metal industry of Russia, Zh. Sibirsk. Federal. Univ. Ser.: Tekhnika i Tekhnologii, 2011, vol. 4, no. 2, pp. 132–154.

    Google Scholar 

  100. Machado, N., Clark, T., David, J., and Goulet, N., U-Pb ages for magmatism and deformation in the New Quebec orogen, Can. J. Earth Sci., 1997, vol. 34, pp. 716–723.

    Article  Google Scholar 

  101. Makanga, J.F. and Edou-Minko, A., Etude petrographique et geochimique du complexe annulaire de Mabounie (Gabon), Afr. J. Sci. Technol., 2003, vol. 4, no. 1, pp. 67–77.

    Google Scholar 

  102. Marien, C., Dijkstra, A.H., and Wilkins, C., The hydrothermal alteration of carbonatite in the Fen complex, Norway: mineralogy, geochemistry, and implications for rare-earth element resource formation, Mineral. Mag., 2018, vol. 82, no. S1, pp. 115–S131.

    Article  Google Scholar 

  103. McCreath, J.A., Finch, A.A., Simonsen, S.L., Donaldson, C.H., and Armour-Brown, A., Independent ages of magmatic and hydrothermal activity in alkaline igneous rocks: the Motzfeldt Centre, Gardar Province, South Greenland, Contrib. Mineral. Petrol., 2012, vol. 163, no. 6, pp. 967–982.

    Article  Google Scholar 

  104. Meakin, N.S. and Morgan, E.J., Dubbo 1:250,000 Geological Sheet SI/55-4. Explanatory Notes, 2nd Ed., Sydney: Geol. Surv. New South Wales, 1999.

    Google Scholar 

  105. Meert, J.G., Torsvik, T.H., Eide, E.A., and Dahlgren, S., Tectonic significance of the Fen Province, S. Norway: constraints from geochronology and paleomagnetism, J. Geol., 1998, vol. 106, pp. 553–564.

    Article  Google Scholar 

  106. Miller, R.R., Pantellerite-hosted rare earth element mineralization in southeast Labrador: the Foxtrot deposit, Symposium on Strategic and Critical Materials Proceedings, British Columbia Geological Survey, 2015, Paper 2015-3, pp. 13–14.

  107. Miller, R.R., Heaman, L.M., and Birkett, T.C., U-Pb zircon age of the Strange Lake peralkaline complex: Implications for the Mesoproterozoic peralkaline magmatism in north-central Labrador, Precambrian Res., 1997, vol. 81, pp. 67–82.

    Article  Google Scholar 

  108. Mitchell, R.H. and Smith, D.L., Geology and mineralogy of the Ashram zone carbonatite, Eldor complex, Quebec, Ore Geol. Rev., 2017, vol. 86, pp. 784–806.

    Article  Google Scholar 

  109. Moghazi, A.-K.M., Iaccheri, L.M., Bakhsh, R.A., Kotov, A.B., and Ali, K.A., Sources of rare-metal-bearing A-type granites from Jabel Sayed complex, northern Arabian Shield, Saudi Arabia, J. Asian Earth Sci., 2015, vol. 107, pp. 244–258.

    Article  Google Scholar 

  110. Möller, V. and Williams-Jones, A.E., Stable and radiogenic isotope constraints on the magmatic and hydrothermal evolution of the Nechalacho layered suite, northwest Canada, Chem. Geol., 2016, vol. 440, pp. 248–274.

    Article  Google Scholar 

  111. Montero, P., Haissen, F., Mouttaqi, A., Molina, J.F., Errami, A., Sadki, O., Cambeses, A., and Bea, F., Contrasting SHRIMP U-Pb zircon ages of two carbonatite complexes from the peri-cratonic terranes of the Reguibat Shield: implications for the lateral extension of the west African Craton, Gondwana Res., 2016, vol. 38, pp. 238–250.

    Article  Google Scholar 

  112. Mott, A.V., Bird, D.K., Grove, M., Rose, N., Bernstein, S., Mackay, H., and Krebs, J., Karrat Isfjord: a newly discovered Paleoproterozoic carbonatite-sourced REE deposit, central west Greenland, Econ. Geol., 2013, vol. 108.

  113. Nadeau, O., Cayer, A., Pelletier, M., Stevenson, R., and Jebrak, M., The Paleoproterozoic Montviel carbonatite-hosted REE–Nb deposit, Abitibi, Canada: geology, mineralogy, geochemistry and genesis, Ore Geol. Rev., 2015, vol. 67, pp. 314–335.

    Article  Google Scholar 

  114. Néron, A., Bédard, L.P., and Gaboury, D., The Saint-Honoré carbonatite REE zone, Québec, Canada: combined magmatic and hydrothermal processes, Minerals, 2018, vol. 8, no. 9, paper 397.

  115. Neumann, R. and Medeiros, E.B., Comprehensive mineralogical and technological characterisation of the Araxá (SE Brazil) complex REE (Nb–P) ore, and the fate of its processing, Int. J. Mineral Proc., 2015, vol. 144, pp. 1–10.

    Article  Google Scholar 

  116. Ngo, X.D., Zhao, X.-F., Tran, T.H., Deng, X.-D., and Li, J.-W., Two episodes of REEs mineralization at the Sin Quyen IOCG deposit, NW Vietnam, Ore Geol. Rev., 2020, vol. 125.

  117. Nguyen, D.C., Pieczonka, J., Piestrzynski, A., Duong, V.H., Le K.P., and Jodlowski, P., General characteristics of rare earth and radioactive elements in Dong Pao deposit, Lai Chau, Vietnam, Vietnam J. Earth Sci., 2017, vol. 39, no. 1, pp. 14–26.

    Google Scholar 

  118. Nguyen, T.T., Wada, H., Ishikawa, T., and Shimano, T., Geochemistry and petrogenesis of carbonatites from south Nam Xe, Lai Chau area, northwest Vietnam, Mineral. Petrol., 2014, vol. 108, pp. 371–390.

    Article  Google Scholar 

  119. Nikiforov, A.V., Öztürk, H., Altuncu, S., and Lebedev V.A., Kizilcaören ore-bearing complex with carbonatites (Northwestern Anatolia, Turkey): formation time and mineralogy of rocks, Geol. Ore Deposits, 2014, vol. 56, no. 1, pp. 35–60.

    Article  Google Scholar 

  120. Nikolenko, A.M., Doroshkevich, A.G., Ponomar-chuk, A.V., Redina, A.A., Prokopyev, I.R., Vladykin, N.V., and Nikolaeva, I.V., Ar-Ar geochronology and petrogenesis of the Mushgai-Khudag alkaline–carbonatite complex (Southern Mongolia), Lithos, 2020, vol. 372–373.

  121. ONHYM. Annular structure of Lahjeyra (REE, Nb, Fe, Mo, Au, V) (Southern Provinces, Morocco). 2020a. http://www.onhym.com/pdf/en/MiningOpportunities_ Eng_2020/03_Lahjeyra_2020_Eng.pdf (accessed December 20, 2020)

  122. ONHYM. Twihinate and Lamlaga Annular Structures (REE, Nb, Fe, U) (Southern Provinces, Morocco), 2020b. URL: http://www.onhym.com/pdf/en/MiningOpportunities_Eng_2020/ 02_Twihinate_2020_Eng.pdf (accessed December 20, 2020)

  123. Oliver, N.H.S., Pearson, P.J., Holcombe, R.J., and Ord, A., Mary Kathleen metamorphic-hydrothermal uranium–rare-earth element deposit: ore genesis and numerical model of coupled deformation and fluid flow, Austr. J. Earth Sci., 1999, vol. 46, pp. 467–484.

    Article  Google Scholar 

  124. Palmieri, M., Modelo Geológico e Avaliação de Recursos Minerais do Depósito de Nióbio do Morro do Padre, Complexo Alcalino Carbonatítico de Catalão II, GO, MSc Thesis, University of Brasília, 2011.

  125. Paulick, H. and Machacek, E., The global rare earth element exploration boom: an analysis of resources outside of china and discussion of development perspectives, Resour. Policy, 2017, vol. 52, pp. 134–153.

    Article  Google Scholar 

  126. Paulick, H., Rosa, D., and Kalvig, P., Rare Earth Element Projects and Exploration Potential in Greenland. MiMa Rapport 2015/2, Copenhagen: GEUS. 2015. www.geus.dk/om-geus/nyheder/nyhedsarkiv/2015/maj/rare-earth-element-ree-exploration-in-greenland (accessed December 15, 2020)

  127. Pensana Metals Ltd., Preliminary Feasibility Study for the Longonjo NdPr Project. ASX Release, 2019. https://pensana.co.uk/wp-content/uploads/2020/09/PFS-15.11.2019-1. pdf (accessed March 11, 2021).

  128. Pinto-Ward, C., Controls on the Enrichment of the Serra Verde Rare Earth Deposit, Brazil, PhD Thesis, London: Imperial College, 2017.

  129. Plyusnin, G.S., Kolyago, E.K., Pakhol’chenko, Yu.A., Kalmychkova, T.N., and Sandimirova, G.P., Rb-Sr age and genesis of the Kii alkaline massif, Yenise Range, Dokl. Akad. Nauk SSSR, 1989, vol. 305, no. 4, pp. 956–960.

    Google Scholar 

  130. Poletti, J.E., Cottle, J.M., Hagen-Peter, G.A., and Lackey, J.S., Petrochronological constraints on the origin of the Mountain Pass ultrapotassic and carbonatite intrusive suite, California, J. Petrol., 2016, vol. 57, no. 8, pp. 1555–1598.

    Google Scholar 

  131. Pollard, B. and Mapleson, D., NI 43-101 Technical Report for the Mrima Hill Niobium and Rare Earth Project, Kwale District, Kenya. Prepared for Pacific Wildcat Resources Corp. Perth: BMGS, 2013. URL: https://www.sedar.com (accessed March 17, 2021).

  132. Prokopyev, I.R., Doroshkevich, A.G., Ponomarchuk, A.V., and Sergeev, S.A., Mineralogy, age and genesis of apatite-dolomite ores at the Seligdar apatite deposit (Central Aldan, Russia), Ore Geol. Rev., 2017, vol. 81, pp. 296–308.

    Article  Google Scholar 

  133. Qadhi, T.M., Origin and hydrothermal alteration of rare-metal granites in the Al-Hamra area, northeastern Arabian Shield, Saudi Arabia, Central Eur. Geol., 2007, vol. 50, no. (3), pp. 259–282.

  134. Qiu, K., Yu, H., Wu, M., Geng, J., Ge, X., Gou, Z., and Taylor, R.D., Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit, China, Am. Mineral., 2019, vol. 104, pp. 1487–1502.

    Article  Google Scholar 

  135. Ram, R., Becker, M., Brugger, J., Etschmann, B., Burcher-Jones, C., Howard, D., Kooyman, P.J., and Petersen, J., Characterization of a rare earth element- and zirconium-bearing ion-adsorption clay deposit in Madagascar, Chem. Geol., 2019, vol. 522, pp. 93–107.

    Article  Google Scholar 

  136. Ramsden, A.R., French, D.H., and Chalmers, D.I., Volcanic-hosted rare-metals deposit at Brockman, Western Australia: mineralogy and geochemistry of the niobium tuff, Mineral. Deposita, 1993, vol. 28, pp. 1–12.

    Article  Google Scholar 

  137. Ribeiro, C.C., Geologia, Geometalurgia, Controles e Gênese dos Depósitos de Fósforo, Terras Raras e Titânio do Complexo Carbonatítico Catalao I, GO. PhD thesis, Universidade de Brasilia, 2008.

  138. Richards, M., Rare-earth element–niobium mineralized carbonatite, Clay Howells alkalic complex, Kapuskasing, Ontario: significance of magnetite saturation and fractionation, Atlantic Geol., 2011, vol. 47, no. 1, pp. 208–209.

    Google Scholar 

  139. Rodionov, N.V., Lepekhina, E.N., Antonov, A.V., Kapitonov, I.N., Balashova, Yu.S., Belyatsky, B.V., Arzamastsev, A.A., and Sergeev, S.A., U-Pb SHRIMP-II ages of titanite and timing constraintson apatite–nepheline mineralization in the Khibiny and Lovozero alkaline massifs (Kola Peninsula), Russ. Geol. Geophys., 2018, vol. 59, no. 8, pp. 962–974.

    Article  Google Scholar 

  140. Rossoni, M.B., Bastos, NetoA.C., Souza, V.S., Mar-ques, J.C., Dantas, E., Botelho, N.F., Giovannini, A.L., and Pereira, V.P., U-Pb zircon geochronologycal investigation on the Morro Dos Seis Lagos carbonatite complex and associated Nb deposit (Amazonas, Brazil), J. South Am. Earth Sci., 2017, vol. 80, pp. 1–17.

    Article  Google Scholar 

  141. Rudnick, R.L. and Gao, S., Composition of the continental crust, Treatise on Geochemistry. Volume 3. Crust, Rudnick, R.L., Holland, H.D., Turekian, K.K., Eds., Oxford: Elsevier and Pergamon, 2003, pp. 1–64.

  142. Rukhlov, A.S. and Bell, K., Geochronology of carbonatites from the Canadian and Baltic shields, and the Canadian Cordillera: clues to mantle evolution, Mineral. Petrol., 2010, vol. 98, pp. 11–54.

    Article  Google Scholar 

  143. Rundqvist, D.V., Tkachev, A.V., Cherkasov, S.V., et al., Krupnye i superkrupnye mestorozhdeniya rudnykh poleznykh iskopaemykh. T.1. Global’nye zakonomernosti razmeshcheniya (Large and Superlarge Ore Deposits. Volume 1. Global Tendencies in Distribution), Moscow: IGEM RAN, 2006.

  144. Sal’nikova, E.B., Yakovleva, S.Z., Nikiforov, A.V., Kotov, A.B., Yarmolyuk, V.V., Anisimova, I.V., Sugorakova, A.M., and Plotkina, Yu.V., Bastnaesite: A promising U–Pb geochronological tool, Dokl. Earth Sci., 2010, vol. 430, no. 3, pp. 134–136.

    Article  Google Scholar 

  145. Schønwandt, H.K., Barnes, G.B., and Ulrich, T., A description of the world-class rare earth element deposit, Tanbreez, South Greenland, Rare Earths Industry: Technological, Economic and Environmental Implications, De Lima, I.B. and Filho, W.L., Eds., London: Elsevier, 2016, pp. 73–85.

  146. Secher, K., Heaman, L.M., Nielsen, T.F.D., Jensen, S.M., Schjoth, F., and Creaser, R.A., Timing of kimberlite, carbonatite, and ultramafic lamprophyre emplacement in the alkaline province located 64°–67° N in southern West Greenland, Lithos, 2009, vol. 112S, pp. 400–406.

    Article  Google Scholar 

  147. Serdyuk, S.S., Lomayev, V.G., Kuzmin, V.I., Flett, D.S., Gudkova, N.V., Kuzmin, D.V., Mulagaleeva, M.A., Kuzmina, V.N., Kalyakin, S.N., and Logutenko, O.A., The Chuktukon niobium-rare earth metals deposit: geology and investigation into the processing options of the ores, Minerals Eng., 2017, vol. 113, pp. 8–14.

    Article  Google Scholar 

  148. Shea, M.E., Isotopic geochemical characterization of selected nepheline syenites and phonolites from the Pocos de Caldas alkaline complex, Minas Gerais, Brazil, J. Geochem. Explor., 1992, vol. 45, pp. 173–214.

    Article  Google Scholar 

  149. Sheremet, E.M., Mel’nikov, V.S., Strekozov, S.N., Kozar, N.A., and Voznyak, D.K., Azovskoe redkometal’noe mestorozhdenie Priazovskogo megabloka Ukrainskogo shchita (geologiya, mineralogiya, geokhimiya, genezis, problemy ekspluatatsii) (Azov Rare-Metal Deposit of the Near-Azov megablock, Ukrainian Shield (Geology, Mineralogy, Gechemistry, Genesis, and Problems of Exploitation), Donetsk: Noulidzh, 2012.

  150. Sheth, H., Pande, K., Vijayan, A., Sharma, K.K., and Cucciniello, C., Recurrent Early Cretaceous Indo-Madagascar (89–86 Ma) and Deccan (66 Ma) alkaline magmatism in the Sarnu–Dandali complex, Rajasthan: 40Ar/39Ar age evidence and geodynamic significance, Lithos, 2017, vol. 284–285, pp. 512–524.

    Article  Google Scholar 

  151. Simandl, G.J., Geology and market-dependent significance of rare earth element resources, Mineral. Deposita, 2014, vol. 49, pp. 889–904.

    Article  Google Scholar 

  152. Singh, Y., Rare Earth Element Resources: Indian Context, Springer Nature Switzerland, 2020.

    Book  Google Scholar 

  153. Sjöqvist, A.S.L., Zack, T., Honn, D.K., and Baxter, E.F., Modification of a rare-earth element deposit by low-temperature partial melting during metamorphic overprinting: Norra Kärr alkaline complex, Southern Sweden, Chem. Geol., 2020, vol. 545, 119640.

    Article  Google Scholar 

  154. Slezak, P. and Spandler, C., Carbonatites as recorders of mantle-derived magmatism and subsequent tectonic events: an example of the Gifford Creek carbonatite complex, Western Australia, Lithos, 2019, vol. 328-329, pp. 212–227.

    Article  Google Scholar 

  155. Smith, M.P., Moore, K., Kavecsánszki, D., Finch, A.A., Kynicky, J., and Wall, F., From mantle to critical zone: a review of large and giant sized deposits of the rare earth elements, Geosci. Front., 2016, vol. 7, no. 3, pp. 315–334.

    Article  Google Scholar 

  156. Snelling, N.J., Age determinations on three African carbonatites, Nature, 1965, vol. 30, p. 491.

    Article  Google Scholar 

  157. Sonoki, I.K. and Garda, G.M., Idades K/Ar de rochas alcalinas do brasil meridional e paraguai oriental: compilacao e adaptacao as novas constantes de decaimento, Boletim do Inetituto de Geociencias, Universidade da Sao Paulo, Serie Cientifica, 1988, vol. 19, pp. 63–85.

  158. Sørensen, L.L., Kalvig, P., and Rosa, D., The Rare Earth Element Potential in Greenland. Exploration and Mining in Greenland: Geology and Ore, Copenhagen: GEUS. 2018, no. 29.

  159. Spandler, C. and Morris, C., Geology and genesis of the Toongi rare metal (Zr, Hf, Nb, Ta, Y and REE) deposit, NSW, Australia, and implications for rare metal mineralization in peralkaline igneous rocks, Contrib. Mineral. Petrol., 2016, vol. 171, pp. 104–127.

    Article  Google Scholar 

  160. Spandler, C., Hammerli, J., Sha, P., Hilbert-Wolf, H., Hu, Y., Roberts, E., and Schmitz, M., MKED1: A new titanite standard for in situ analysis of Sm–Nd isotopes and U–Pb geochronology, Chem. Geol., 2016, vol. 425, pp. 110–126.

    Article  Google Scholar 

  161. Su, J.-H., Zhao, X.-F., Li, X.-C., Hu, W., Chen, M., and Xiong, Y.-L., Geological and geochemical characteristics of the Miaoya syenite–carbonatite complex, Central China: implications for the origin of REE–Nb-enriched carbonatite, Ore Geol. Rev., 2019, vol. 113, Paper 103101.

  162. Takehara, L., Silveira, F.V., and Santos, R.V., Potentiality of rare earth elements in brazil, Rare Earths Industry, De Lima, I.B. and Filho, W.L., Eds., Elsevier, 2016, pp. 57–72.

  163. Taylor, W.R., Page, R.W., Esslemont, G., Rock, N.M.S., and Chalmers, D.I., Geology of the volcanic-hosted Brockman rare-metals deposit, Halls Cree mobile zone, Northwest Australia. Part I. Volcanic environment, geochronology and petrography the Brockman volcanics, Mineral. Petrol, 1995, vol. 52, pp. 209–230.

    Article  Google Scholar 

  164. Tkachev, A.V. and Rundqvist, D.V., Global trends in the evolution of metallogenic processes as a reflection of supercontinent cyclicity, Geol. Ore Deposits, 2016, vol. 58, no. 4, pp. 263–283.

    Article  Google Scholar 

  165. Tkachev A.V., Rundkvist D.V., Vishnevskaya N.A. Comparison of supercontinent cycles in the metallogeny of rare earth elements, Dokl. Earth Sci., 2018, vol. 480, no. 2, pp. 730–734.

    Article  Google Scholar 

  166. Tkachev, A.V., Rundqvist, D.V., and Vishnevskaya, N.A., Metallogeny of lithium through geological time, Russ. J. Earth Sci., 2018, vol. 18, no. 6, Paper ES6002, pp. 1–13.

  167. Tkachev, A.V., Bulov, S.V., and Chesalova, E.I., Geoportal “Metallogeny”, Geoinformatika, 2019a, no. 1, pp. 2–11.

  168. Tkachev, A. V., Rundqvist D. V., and Vishnevskaya, N. A., Global metallogeny of tantalum through geological time, Geol. Ore Deposits, 2019b, vol. 61, no., pp. 512–529.

  169. Tkachev, A. V., Rundqvist, D. V., and Vishnevskaya, N. A., Comparison of supercontinent cycles in the metallogeny of niobium, Geol. Ore Deposits, 2020, vol. 62, no. 1, pp. 49–68.

    Article  Google Scholar 

  170. Tran, T.-H., Polyakov, G.V., Tran, T.-A., Borisenko, A.S., Izokh, A.E., Balykin, P.A., Ngo, T.-P., and Pham, T.-D., Intraplate Magmatism and Metallogeny of North Vietnam, Springer International Publishing Switzerland, 2016.

    Book  Google Scholar 

  171. Trofanenko, J., Williams-Jones, A.E., Simandl, G.J., and Migdisov, A.A., The nature and origin of the REE mineralization in the Wicheeda carbonatite, British Columbia, Canada, Econ. Geol., 2016, vol. 111, pp. 199–223.

    Article  Google Scholar 

  172. Tucker, R.D., Belkin, H.E., Schulz, K.J., Peters, S.G., Horton, F., Buttleman, K., and Scott, E.R., A major light rare-earth element (LREE) resources in the Khanneshin carbonatite complex, southern Afghanistan, Econ. Geol., 2012, vol. 107, pp. 197–208.

    Article  Google Scholar 

  173. Van, H.D., Lantoarindriaka, A., Piestrzynski, A., and Trinh, P.T., Fort-Dauphin beach sands, South Madagascar: natural radionuclides and mineralogical studies, Vietnam J. Earth Sci., 2020, vol. 42, no. 2, pp. 118–129.

    Article  Google Scholar 

  174. Van Breemen, O. and Currie, K.L., Geology and U-Pb geochronology of the Kipawa syenite complex—a thrust related alkaline pluton—and adjacent rocks in the Grenville province of Western Quebec, Can. J. Earth Sci., 2004, vol. 41, no. 4, pp. 431–455.

    Article  Google Scholar 

  175. Verplanck, P.L., Mariano, A.N., and Mariano, A., Rare earth element ore geology of carbonatites, Rare earth and critical elements in ore deposits, Rev. Econ. Geol., 2016, vol. 18, pp. 5–32.

    Google Scholar 

  176. Verwoerd, W.J., The Carbonatites of South Africa and South West Africa. South Africa Geological Survey Handbook, 1967, vol. 6.

    Google Scholar 

  177. Vladykin, N.V., Kotov, A.B., Borisenko, A.S., Yarmolyuk, V.V., Pokhilenko, N.P., Sal’nikova, E.B., Travin, A.V., and Yakovleva, S.Z., Age boundaries of formation of the Tomtor alkaline–ultramafic pluton: U–Pb and 40Ar/39Ar geochronological studies, Dokl. Earth Sci., 2014, vol. 454, no. 2, pp. 7–11.

    Article  Google Scholar 

  178. Waber, N., The supergene thorium and rare-earth element deposit at Morro Do Ferro, Pocos De Caldas, Minas Gerais, Brazil, J. Geochem. Explor., 1992, vol. 45, pp. 113–157.

    Article  Google Scholar 

  179. Wall, F., Rare earth elements, Critical Metals Handbook, Gunn, G. Ed., London: Wiley, 2014, pp. 312–339.

    Google Scholar 

  180. Wall, F., Barreiro, B.A., and Spiro, B., Isotopic evidence for late-stage processes in carbonatites: rare earth mineralization in carbonatites and quartz rocks at Kangankunde, Malawi, Mineral. Mag., 1994, vol. 58A, pp. 951–952.

    Article  Google Scholar 

  181. Wang, C., Liu, J., Zhang, H., Zhang, X., Zhang, D., Xi, Z., and Wang, Z., Geochronology and mineralogy of the Weishan carbonatite in Shandong province, eastern China, Geosci. Front., 2019, vol. 10, no. 2, pp. 769–785.

    Article  Google Scholar 

  182. Wang, D., Zhao, Z., Yu, Y., Dai, J., Deng, M., Zhao, T., and Liu, L., Exploration and research progress on ion-adsorption type REE deposit in South China, China Geology, 2018, vol. 1, no. 3, pp. 415–424.

    Google Scholar 

  183. Wang, Z., Fan, H., Zhou, L., Yang, K., and She, H., Carbonatite-related REE deposits: an overview, Minerals, 2020, vol. 10, no. 11, Paper 965, pp. 1–26.

  184. Wang, Z., Li, M.Y.H., Liu, Z.-R.R., and Zhou, M.-F., Scandium: ore deposits, the pivotal role of magmatic enrichment and future exploration, Ore Geol. Rev., 2021, vol. 128, 103906.

    Article  Google Scholar 

  185. Weng, Z.H., Jowitt, S.M., Mudd, G.M., and Haque, N., A detailed assessment of global rare earth element resources: Opportunities and challenges. Econ. Geol., 2015, vol. 110, pp. 1925–1952.

    Article  Google Scholar 

  186. Witt, W.K., Hammond, D.P., and Hughes, M., Geology of the Ngualla carbonatite complex, Tanzania, and origin of the weathered bastnaesite zone REE ore, Ore Geol. Rev., 2019, vol. 105, pp. 28–54.

    Article  Google Scholar 

  187. Workman, A., Breede, K., and Goode, J., Update Report on the Appia Energy Corp. Uranium–Rare Earth property, Elliot Lake district, North-Central Ontario, Canada, Toronto: Watts, Griffis and McOuat Ltd., 2013. URL: http://www.sedar.com (accessed December 14, 2020).

  188. Wu, F.Y., Yang, Y.H., Mitchell, R.H., Bellatreccia, F., Li, Q.L., and Zhao, Z.F., In situ U-Pb and Nd–Hf–(Sr) isotopic investigations of zirconolite and calzirtite, Chem. Geol., 2010, vol. 277, pp. 178–195.

    Article  Google Scholar 

  189. Xie, Y., Hou, Z., Goldfarb, R.J., Guo, X., and Wang, L., Rare earth element deposits in china, Rare Earth and Critical Elements in Ore Deposits, Rev. Econ. Geol., 2016, vol. 18, pp. 115–136.

    Book  Google Scholar 

  190. Yang, X., Laukkanen, J., Torppa, A., Enkhzul, B., Lkhagvasuren, B., and Margai, D., Mineralogy and beneficiation of vein-type apatite rare earth element ore from Mushgia Khudag, Mongolia, Rare Earths Industry: Technical, Economic and Environment Implications, Elsevier, 2015, pp. 377–392.

  191. Yarmolyuk V.V., Kovalenko V.I., Sal’nikova E.B, Kozakov I.K., Kotov A.B., Kovach V.P., Vladykin, N.V. and Yakovleva, S.Z., Late Riphean rifting and breakup of Laurasia: data on geochronological studies of ultramafic alkaline complexes in the southern framing of the Siberian Craton, Dokl. Earth Sci., 2005, vol. 404, no. 3, pp. 1031–1036.

    Google Scholar 

  192. Zhang, S.-H., Zhao, Y., and Liu, Y., A precise zircon Th-Pb age of carbonatite sills from the world’s largest Bayan Obo deposit: implications for timing and genesis of REE–Nb mineralization, Precambrian Res., 2017, vol. 291, pp. 202–219.

    Article  Google Scholar 

  193. Zhang, W., Chen, W.T., Gao, J.F., Chen, H.K., and Li, J.H., Two episodes of REE mineralization in the Qinling orogenic belt, Central China: in-situ U–Th–Pb dating of bastnaesite and monazite, Mineral. Deposita, 2019, vol. 54, pp. 1265–1280.

    Article  Google Scholar 

  194. Zhou, B., Li, Z., and Chen, C., Global potential of rare earth resources and rare earth demand from clean technologies, Minerals, 2017, vol. 7, paper 203, pp. 1–14.

  195. Zozulya, D.R., Lyalina, L.M., and Savchenko, E.E., Britholite ores of the Sakharjok Zr–Y–REE Deposit, Kola Peninsula: geochemistry, mineralogy, and formation stages, Geochem. Int., 2015, vol. 53, no. 10, pp. 892–902.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to the two anonymous reviewers for their careful reading of the manuscript and their comments and recommendations. They were taken into account as much as possible during the preparation of the final version of the article and allowed us undoubtedly to improve the quality of the presentation of the results of our study.

Funding

This study was carried out within the state assignment of Vernadsky State Geological Museum of Russian Academy of Sciences (GGM RAS) (topic no. 0140-2019-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tkachev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Voroshchuk

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tkachev, A.V., Rundqvist, D.V. & Vishnevskaya, N.A. Main Features of the REE Metallogeny through Geological Time. Geol. Ore Deposits 64, 41–77 (2022). https://doi.org/10.1134/S1075701522030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701522030060

Keywords:

  • rare earth element mineral deposit
  • REE metallogeny
  • alkaline magmatic complex
  • weathering crust
  • placer deposit
  • ionic clays,”
  • supercontinent cycle