Skip to main content

Genesis of Barite–Galena Ores at the Ushkatyn-III Deposit, Central Kazakhstan: Analysis of Geological, Mineralogical, and Isotopic (δ34S, δ13C, δ18O) Data


The Ushkatyn-III deposit is located in Central Kazakhstan, 300 km west of the city of Karaganda. The ore member consists of Upper Devonian carbonate rocks containing stratiform layers of hydrothermal–sedimentary iron–manganese and hydrothermal barite–lead ores. The study objects include barite–lead (barite–galena) ores localized within a reef limestone member. The major ore minerals are calcite, barite, and galena; characteristic minor minerals include quartz, hematite, sphalerite, pyrite, muscovite–phengite, chamosite, K-feldspar, albite, fluorite, dolomite, rhodochrosite, and siderite; and accessory minerals include native silver, rutile, ilmenite, chalcocite, acanthite, chalcopyrite, pyrargyrite, tetrahedrite, zircon, pyrophyllite, and apatite. Cerussite, pyromorphite, kaolinite, montmorillonite, and malachite are identified as supergene minerals. Cerussite is one of the main minerals in the oxidation zone. Three major ore varieties are distinguished in terms of texture. They are related by layered–banded, pocketlike–net, and massive spotted mutual transitions. The ore structure is indicative of the fact that barite and galena were mostly deposited in open pores and fractures of incompletely lithified carbonate deposits. Based on δ34Sbarite = 10.9–15.3‰, the barite formation involved isotopically heavy sulfur of the sulfate ion dissolved in seawater, whereas the δ34Ssulfides (galena) values from –25.7 to –12.6‰ record 32S-enriched (light isotope) hydrogen sulfide generated in the course of bacterial sulfate reduction. A formation model is proposed for the Ushkatyn-III deposit. According to this model, its barite–galena, iron, and manganese ores were products of a single hydrothermal system that developed within a thick sedimentary sequence. Barite–galena ores formed near the seabed surface with the discharge of hydrothermal solutions in internal zones of the still-forming reef. The ore material was deposited in the area where the hydrothermal solutions carrying Ba, Pb, Zn, Fe, Mn, and other elements were mixed with near-surface waters filling pores and fractures inside the reef, characterized by bacterial reduction of seawater sulfate ion to hydrogen sulfide. Penetrating through the reef, the fluids lost most of the Ba and Pb, deposited as barite and galena, but retained Zn, Fe, and Mn in dissolved form. Subsequently, Fe and Mn were deposited as oxides: Fe, on the reef surface or at some distance from it, and Mn, at a considerable distance. Zn dispersed in the surrounding space without forming any orebodies.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.


  1. Atlas of Mineral Deposit models of the Republic of Kazakhstan, Daukeev, S.Zh., Uzhkenov, B.S., Bespaev, Kh.A., Miroshnichenko, L.A., Mazurov, A.K., and Sayduakasov, M.A., Eds., Almaty: Printing House “Center for Geoinformation of the MF RK, 2004.

  2. Bethke, C.M., Geochemical Reaction Modeling, New York: Oxford University Press, 1996.

    Book  Google Scholar 

  3. Brusnitsyn, A.I., Kuleshov, V.N., Sadykov, S.A., Perova, E.N., and Vereshchagin, O.S., Isotopic composition (δ13C and δ18O) and genesis of Mn-bearing sediments in the Ushkatyn-III deposit, Central Kazakhstan, Lithol. Miner. Resour., 2020, vol. 6, pp. 445–467.

    Article  Google Scholar 

  4. Brusnitsyn, A.I., Perova, E.N., Vereshchagin, O.S., Britvin, S.N., Platonova, N.V., and Shilovskikh, V.V., Mineralogy of iron and manganese ores of the Ushkatyn-III deposit, Central Kazakhstan, Zap. Ross. Mineral. O-va, 2021a, no. 1, pp. 1–29.

  5. Brusnitsyn, A.I., Perova, E.N., Vereshchagin, O.S., and Vetrova, M.N., Geochemical features and accumulation conditions of Mn-bearing sediments in the complex (Fe–Mn and BaSO4–Pb) Ushkatyn-III Deposit, Central Kazakhstan, Geochem. Int., 2021b, vol. 59, no. 7, pp. 858–888.

    Article  Google Scholar 

  6. Buzmakov, E.I. and Shibrik, V.I., Stratigraphy and lithology of Famennian and Tournaisian deposits of the Atasu ore field, Sovetskaya Geol., 1976, no. 2, pp. 61–79.

  7. Buzmakov, E.I., Shibrik, V.I., Rozhnov, A.A., Sereda, V.Ya., and Radchenko, N.M., Stratiform ferromanganese and base metal deposits of the Ushkatyn ore field (Central Kazakhstan), Geol. Rud. Mestorozhd., 1975, no. 1, pp. 32–46.

  8. Canfield, D.E., Biogeochemistry of sulfur isotopes, Rev. Mineral. Geochem., 2001, vol. 43, pp. 607–636.

    Article  Google Scholar 

  9. Cansu, Z. and Ozturk, H., Formation and genesis of Paleozoic sediment-hosted barite deposits in Turkey, Ore Geol. Rev., 2020, vol. 125, pp. 1–16.

    Article  Google Scholar 

  10. Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., and Zak, I., The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation, Chem. Geol., 1980, vol. 28, pp. 199–260.

    Article  Google Scholar 

  11. Elswick, E.R. and Maynard, J.B., Bedded Barite Deposits: Environments of Deposition, Styles of Mineralization, and Tectonic Settings, Treatise on Geochemistry, Amsterdam: Elsevier, 2014, vol. 13.

    Google Scholar 

  12. Emsbo, P., Seal, R.R., Breit, G.N., Diehl, S.F., and Shah, A.K., Sedimentary Exhalative (Sedex) Zinc–Lead–Silver Deposit Model, U.S. Geol. Surv. Sci. Invest. Rept., 2016, 2010-5070-N.

  13. Fry, B., Brand, W., Mersch, F.J., Tholke, K., and Garritt, R., Automated analysis system for coupled d13C and d15N measurement, Analyt. Chem., 1992, vol. 64, pp. 288–291.

    Article  Google Scholar 

  14. Giesemann, A., Jager, H.J., Norman, A.L., Krouse, H.P., and Brand, W.A., Online sulfur-isotope determination using an elemental analyzer coupled to a mass-spectrometer, Analyt. Chem., 1994, vol. 66, pp. 2816–2819.

    Article  Google Scholar 

  15. Grassineau, N.V., Mattey, D., and Lowry, D., Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotope ratio mass spectrometry, Analyt. Chem., 2001, vol. 73, pp. 220– 225.

    Article  Google Scholar 

  16. Griffith, E.M. and Paytan, A., Barite in the ocean - occurence, geochemistry and palaeoceanographic applications, Sedimentology, 2012, vol. 59, pp. 1817–1835.

    Article  Google Scholar 

  17. Hanor, J.S., Barite–celestine geochemistry and environments of formation, Rev. Mineral. Geochem., 2000, vol. 40, pp. 193–275.

    Article  Google Scholar 

  18. Hein, J.R., Zierenberg, R.A., Maynard, J.B., and Hannington, M.D., Barite-forming environment along a rifted continental margin, Southern California Borderland, Deep-Sea Res. II, 2007, vol. 54, pp. 1327–1349.

    Article  Google Scholar 

  19. Hoefs, J., Stable Isotope Geochemistry, Berlin Heidelberg: Springer-Verlag, 2018.

    Book  Google Scholar 

  20. Johnson, C.A., Kelley, K.D., and Leach, D., Sulfur and oxygen isotopes in barite deposits of the Western Brooks Range, Alaska, and implications for the origin of the Red Dog massive sulfide deposits, Econ. Geol., 2004, vol. 99, pp. 63–86.

    Article  Google Scholar 

  21. Johnson, C.A., Emsbo, P., Poolw, F.G., and Rye, P.R., Sulfur- and oxygen-isotopes in sediment-hosted stratiform barite deposits, Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 133–147.

    Article  Google Scholar 

  22. Kalinin, V.V., Complex ferromanganese and zinc—lead—barite ores of the Ushkatyn Group deposits (Central Kazakhstan), Vulkanogenno-osadochnye i gidrotermal’nye margantsevye mestorozhdeniya (Volcanosedimentary and Hydrothermal Manganese Deposits), Vitovskaya, I.V, Eds., Moscow: Nauka, 1985, pp. 5–64.

  23. Kalinin, V.V., Metamorphism in manganese and ferromanganese ores of the Ushkatyn Group deposits (Central Kazakhstan), Geologiya i geokhimiya margantsa (Manganese Geology and Geochemistry), Varentsov, I.M, Eds., Moscow: Nauka, 1982, pp. 122–127.

  24. Kalinin, V.V., Rozhnov, A.A., Buzmakov, E.I., Sereda, V.Ya., and Shibrik, V.I., Ore composition and genetic features of the deposits of the Ushkatyn ore field, Margantsevoe rudoobrazovanie na territorii SSSR (Manganese Ore Formation at the USSR Territory), Sapozhnikov, D.G., Eds., Nauka: Moscow, 1984, pp. 131–137.

    Google Scholar 

  25. Kayupova, M.M., Mineralogiya zheleznykh i margantsevykh rud Zapadnogo Atasu (Tsentral’nyi Kazakhstan) (Mineralogy of Iron and Manganese Ores of Western Atasu (Central Kazakhstan)), Alma-Ata: Nauka, 1974.

  26. Kholodov, V.N., Geokhimiya osadochnogo protsessa (Geochemistry of Sedimentary Process), Moscow: GEOS, 2006.

  27. Kislyakov, Ya.M. and Shchetochkin, V.N., Gidrogennoe rudoobrazovanie (Hydrogenic Ore Formation), Moscow: ZAO “Geoinfommark”, 2000.

  28. Konhauser, K., Introduction to Geomicrobiology, Carlton, Australia: Blackwell Publishing, 2007.

    Google Scholar 

  29. Korobkin, V.V. and Buslov, M.M., Tectonics and geodynamics of the western Central Asian Fold Belt (Kazakhstan Paleozoides), Russ. Geol. Geophys., 2011, vol. 12, pp. 1600–1618.

    Article  Google Scholar 

  30. Krivovichev, V.G., Parageneses of minerals and analysis of mineral equilibria in barite and barite—base metal deposits, Mineraly i paragenezisy mineralov, gornykh porod i rud (Minerals and Parageneses of Minerals, Rocks, and Ores), Leningrad: Nauka, 1979, pp. 45–59.

    Google Scholar 

  31. Krylov, N.N., Stromatolity rifeya i fanerozoya SSSR (Stromatolites of Riphean and Phanerozoic of the USSR), Moscow: Nauka, 1975.

  32. Kuleshov, V.N., Evolution of isotopic carbon dioxide–water systems in lithogenesis: Communication 2. Catagenesis, Lithol. Miner. Resour., 2001, vol. 36, no. 6, pp. 537–554.

    Article  Google Scholar 

  33. Kuleshov, V.N., Margantsevye porody i rudy: geokhimiya izotopov, genezis, evolyutsiya rudogeneza (Manganese Rocks and Ores: Isotope Geochemistry, Genesis, and Evolution of Ore Formation), Moscow: Nauchnyi mir, 2013.

  34. Lebedev, L.M. and Nikitina, I.B., Chelekenskaya rudoobrazuyushchaya sistema (Cheleken Ore Forming System), Moscow: Nauka, 1983.

  35. Lein, A.Yu., Authigenic carbonate formation in the ocean, Lithol. Miner. Resour., 2004, vol. 39, no. 1, pp. 1–30.

    Article  Google Scholar 

  36. Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (A Reference Book on Analytical Chemistry), Moscow: Kniga po trebovaniyu, 2012.

  37. McKibben, M., Andes, J.P., and Williams, A.E., Active ore formation at a brine interface in metamorphosed deltaic lacustrine sediments: the Solton Sea geotermal system, Calofornia, Econ. Geol., 1988, vol. 83, pp. 511–523.

    Article  Google Scholar 

  38. McKibben, M. and Hardie, L.A., Ore forming brines in active continental rifts, Geochemistry of Hydrothermal Ore Deposits, New York: John Wiley and Sons Inc, 1997, pp. 877–936.

    Google Scholar 

  39. Mitryaeva N.M. Mineralogiya barito-tsinkovo-svintsovykh rud mestorozhdenii Atasuskogo raiona (Mineralogy of the Barite–Zinc–Lead Ores of the Deposits of the Atasu District), Alma-Ata: Nauka, 1979.

  40. Posfai, M. and Dunin-Borkowski, R.E., Sulfides in biosystems, Rev. Mineral. Geochem., 2006, vol. 61, pp. 679–714.

    Article  Google Scholar 

  41. Richard, D. and Morse, J.W., Acia volatiale sulfide (AVS), Mar. Chem., 2005, vol. 97, pp. 141–197.

    Article  Google Scholar 

  42. Robb, L., Introduction to Ore-Forming Processes, Malden–Oxford–Carlton: Blackwell Publishing, 2005.

    Google Scholar 

  43. Rozhnov, A.A., On the geological–genetic features of manganese mineralization in the western Dzhail’min basin and place of manganese mineralizaiton in the series of iron and base metal occurrences of the district, Margantsevye mestorozhdeniya SSSR (Manganese Deposits of the USSR), Sapozhnikov, D.G, Eds., Moscow: Nauka, 1967, pp. 311–324.

  44. Rozhnov, A.A., A comparative characteristics of manganese deposits of the Atasu and Nikopol–Chiatur types, Geologiya i geokhimiya margantsa (Manganese Geology and Geochemistry), Varentsov, I.M, Eds., Moscow: Nauka, 1982, pp. 116–121.

  45. Rozhnov, A.A., Buzmakov, E.I., Manukhin, N.K., and Shchibrik, V.I., Zoning of iron and manganese ores of the Atasu deposit (Central Kazakhstan), Geol. Rud. Mestorozhd., 1976, no. 3, pp. 23–32.

  46. Schoonen, M.A.A., Mechanisms of sedimentary pyrite formation, Geol. Soc. Am., Spec. Pap., 2004, vol. 379, pp. 117–134.

    Google Scholar 

  47. Schoonen, M.A.A. and Barnes, H.L., Reactions forming pyrite and marcasite from solution: III. hydrothermal processes, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 3491–3504.

    Article  Google Scholar 

  48. Seal, R.R., Sulfur isotope geochemistry of sulfide minerals, Rev. Mineral. Geochem., 2006, vol. 61, pp. 633–677.

    Article  Google Scholar 

  49. Shcherba, G.N., Atasu-type deposits, Geol. Rud. Mestorozhd., 1967, no. 5, pp. 106–114.

  50. Shcherba, G.N., Some features of study of the Atasu-type deposits, Izv. Akad. Nauk KazSSR, Ser. Geol., 1964, no. 5, pp. 15–33.

  51. Skripchenko, N.S., Prognozirovanie mestorozhdenii tsvetnykh metallov v osadochnykh porodakh (Prediction of Non-Ferrous Metals in Sedimentary Rocks), Moscow: Nedra, 1989.

  52. Spravochnoe posobie po stratiformnym mestorozhdeniyam (A Handbook on Stratiform Deposits), Narkelyun, L.F. and Trubachev, A.I., Eds., Moscow: Nedra, 1990.

    Google Scholar 

  53. Varentsov, I.M., Veimarn, A.B., Rozhnov, A.A., Shibrik, V.I., and Soklova, A.L., Geochemical model of the formation of manganese ores of the Famennian rift basin, Kazakhstan: major components, rare-earth and trace elements, Litol. Polezn. Iskop., 1993, no. 3, pp. 56–79.

  54. Veimarn, A.B., Famennian Ferromanganese Deposits, Central Kazakhstan, Geologiya i geokhimiya margantsa (Manganese Geology and Geochemistry), Varentsov, I.M., Eds., Moscow: Nauka, 1982, pp. 122–127.

    Google Scholar 

  55. Veimarn, A.B. and Milanovsky, E.E., Famennian rifting by the example of Kazakhstan and some other regions of Eurasia. Paper 1., Byull. Mosk. O-va Ispyt. Prir. Otd. Geol., 1990, no. 4, pp. 34–47.

  56. Vinogradov, V.I., Rol’ osadochnogo tsikla v geokhimii izotopov sery (Role of Sedimentary Cycle in Sulfur Isotope Geochemistry), Moscow: Nauka, 1980.

  57. Werner, R.A. and Brand, W.A., Referencing strategies and techniques in stable isotope ratio analysis, Rapid Commun. Mass Spectrom., 2001, vol. 15, pp. 501–519.

    Article  Google Scholar 

  58. Wilkinson, J.J. and Eyre, S.L., Ore-forming processes in Irish-type carbonate-hosted Zn–Pb deposits: evidence from mineralogy, chemisrty, and isotopic composition of sulfides at the Lishen mine, Econ. Geol., 2005, vol. 100, pp. 63–86.

    Article  Google Scholar 

  59. Wilkinson, J.J., Sediment-Hosted Zinc–Lead Mineralization: Processes and Perspectives. Treatise on Geochemistry, Amsterdam: Elsevier, 2014, vol. 13.

    Book  Google Scholar 

  60. Zhairem Mining and Processing Plant. Year Report for 2015, AO ZhGOK, 2015.

Download references


We are grateful to A.Yu. Burkovskii, Chairman of the Board of the Zhairem Mining and Processing Plant (Zhairem, Republic of Kazakhstan), and geologists of this enterprise: V.A. Volkov, O.A. Muratov, A.N. Abdelmanova, Zh.Zh. Akimeev, K.A. Akshalova, A.S. Burkhanov, R.B. Ivakova, and G.K. Turlynova for assistance in field research. The studies were carried out using the analytical capabilities of the Center of X-ray Diffraction Studies and Microscopy and Microanalysis Center, St. Petersburg State University (St. Petersburg), and the Oregenesis Mineralogy Laboratory, Institute of Mineralogy, Southern Ural Federal Scientific Center of Mineralogy and Geoecology, Ural Branch, Russian Academy of Sciences (Miass).


The study was carried out under the state task of the Institute of Mineralogy, Southern Ural Federal Scientific Center of Mineralogy and Geoecology, Ural Branch, Russian Academy of Sciences, “Mineralogical and Geochemical Evolution and Metallogeny of Hydrothermal, Authigenic, and Supergene Ore-Forming Systems” (topic no. АААА-А19-119061790049-3).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to A. I. Brusnitsyn or S. A. Sadykov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Maslennikova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brusnitsyn, A.I., Sadykov, S.A., Perova, E.N. et al. Genesis of Barite–Galena Ores at the Ushkatyn-III Deposit, Central Kazakhstan: Analysis of Geological, Mineralogical, and Isotopic (δ34S, δ13C, δ18O) Data. Geol. Ore Deposits 64, 78–103 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • barite and lead deposits
  • hydrothermal process
  • and Central Kazakhstan