Skip to main content
Log in

Modeling of Mineral Parageneses and Thermobarometry of Metavolcanic Rocks of the Ruker Group in the Southern Prince Charles Mountains, East Antarctica

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Diverse geological complexes that form the crystalline basement of the East Antarctic Platform crop out in the Prince Charles Mountains. The Ruker Group is a member of the metasedimentary complexes that make up the Paleoproterozoic through Neoproterozoic suprastructure of the Ruker Terrane. It is divided into two sequences consisting of highly deformed and greenschist facies metamorphosed sedimentary and volcanic rocks. The mineral and major element compositions of metavolcanic rocks have been studied and physicochemical modeling of mineral parageneses has been performed to reconstruct the P–T parameters of metamorphism. The dependence of the mineralogy of metabasic schists on the protolith composition and the ratio of components in the H2O–CO2 fluid involved in the phase reactions were analyzed. The calculated mole fraction of CO2 in the fluid equilibrated with carbonate-bearing parageneses is 0.13–0.27. It is assumed that chloritoid schist consists of metamorphosed laterites derived from basalt. Modeling and the data of chlorite–phengite thermobarometry indicate that the Ruker Group rocks were metamorphosed under conditions of the high-pressure part of the greenschist facies (300–450°C, 7–8 kb). These conditions are significantly higher than the stable continental geotherm and are close to those in the zone of a slow subduction geotherm. According to the available geological data, a similar geodynamic setting could be caused by the evolution of the Neoproterozoic intraplate sedimentary basin in connection with deep-sinking basement blocks as a result of tectonic aggregation during the closure of the basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Mineral abbreviations are given according to (Whitney and Evans, 2010).

REFERENCES

  1. Bach, W., Jöns, N., and Klein, F., Metasomatism within the ocean crust, In: Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences, Harlov, D. E., and Austrheim, H. Eds., Berlin–Heidelberg: Springer-Verlag, 2012, pp. 253–288.

    Google Scholar 

  2. Baker, L.L., Rember, W.C., Sprenke, K.F., and Strawn, D.G., Celadonite in continental flood basalts of the Columbia River Basalt Group, Am. Mineral., 2012, vol. 97, pp. 1284–1290.

    Article  Google Scholar 

  3. Baldwin, J.A., Powell, R., Brown, M., Moraes, R., and Fuck, R.A., Modelling of mineral equilibria in ultrahigh-temperature metamorphic rocks from the Anapolis-Itaucu Complex, central Brazil, J. Metamorph. Geol., 2005, vol. 23, pp. 511–523.

    Article  Google Scholar 

  4. Boger, S.D., Wilson, C.J.L., and Fanning, C.M., An Archaean province in the southern Prince Charles Mountains, East Antarctica: U–Pb zircon evidence for c. 3170 Ma granite plutonism and c. 2780 Ma partial melting and orogenesis, Precambrian Res., 2006, vol. 145, pp. 207–228.

    Article  Google Scholar 

  5. Bourdelle, F., Parra, T., Chopin, C., and Beyssac, O., A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 723–735.

    Article  Google Scholar 

  6. Bushmin, S.A. and Glebovitsky, V.A., The scheme of mineral facies of metamorphic rocks, Zap. Ross. Mineral. O-va, 2008, no. 2, pp. 1–13.

  7. De Capitani, C. and Petrakakis, K., The computation of equilibrium assemblage diagrams with Theriak/Domino software, Am. Mineral., 2010, vol. 95, pp. 1006–1016.

    Article  Google Scholar 

  8. De Caritat, P., Hutcheon, I., and Walshe, J.L., Chlorite geothermometry: a review, Clays Clay Miner., 1993, vol. 41, pp. 219–239.

    Article  Google Scholar 

  9. Coggon, R. and Holland, T.J.B., Mixing properties of phengitic micas and revised garnet-phengite thermobarometers, J. Metamorph. Geol., 2002, vol. 20, pp. 683–696.

    Article  Google Scholar 

  10. Diener, J.F.A., Powell, R., White, R.W., and Holland, T.J.B., A new thermodynamic model for clino-and orthoamphiboles in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O, J. Metamorph. Geol., 2007, vol. 25, pp. 631–656.

    Article  Google Scholar 

  11. Dubacq, B., Vidal, O., and De Anrade, V., Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates, Contrib. Mineral. Petrol., 2010, vol. 159, pp. 159–174.

    Article  Google Scholar 

  12. Efremova, S.V. and Stafeev, K.G., Petrokhimocheskie metody issledovaniya gornykh porod (Petrochemical Methods of Investigations of Rocks, Moscow: Nedra, 1985.

  13. Fedorov, L.V. and Tarutin, O.A., Geology of the Ruker Mountain. In: Antarktika. Doklady Komissii (Antarctica. Commission Papers), Moscow: Nauka, 1977, vol. 16, pp. 93–99 (in Russian).

  14. Fitzsimons, I.C.W., Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional orogens, Geology, 2000, vol. 28, pp. 879–882.

    Article  Google Scholar 

  15. Geologiya i mineral’nye resursy Antarktidy (Geology and Mineral Resources of Antarctica), Ivanov, V.L. and Kamenev, E.N., Leningrad: Nauka, 1990.

  16. Grapes, R. and Watanabe, T., Paragenesis of titanite in metagreywackes of the Franz Josef-Fox Glacier area, Southern Alps, New Zealand, Eur. J. Mineral., 1992, vol. 4, pp. 547–555.

    Article  Google Scholar 

  17. Gulbin, Yu.L., Egorova, K.V., Mikhalsky, E.V., Tkacheva, O.L., and Galankina, O.L., New data on the metamorphism of Neoproterozoic Sodruzhestvo Group in the Southern Prince Charles Mountains, East Antarctica, Zap. Ross. Mineral. O-va, 2015, no. 5, pp. 15–32.

  18. Halpern, M. and Grikurov, G.E., Rubidium-strontium data from the southern Prince Charles Mountains, Antarctic J.U.S, 1975, vol. 10, pp. 9–15.

    Google Scholar 

  19. Harley, S.L., Archaean–Cambrian crustal development of East Antarctica: metamorphic characteristics and tectonic implications, In: Proterozoic East Gondwana: Supercontinent Assembly and Breakup, M. Yoshida, D. F. Windley, and S. Dasgupta, Eds., Geol. Soc. London Spec. Publ., 2003, vol. 206, pp. 203–230.

    Google Scholar 

  20. Hashimoto, M., Reactions producing actinolite in basic metamorphic rocks, Lithos, 1972, vol. 5, pp. 19–31.

    Article  Google Scholar 

  21. Hey, M.H., A new review of chlorite, Mineral. Mag., 1954, vol. 30, pp. 277–292.

    Google Scholar 

  22. Holland, T. and Powell, R., Thermodynamics of order-disorder in minerals: II. Symmetric formalism applied to solid solutions, Am. Mineral., 1996, vol. 81, pp. 1425–1437.

    Article  Google Scholar 

  23. Holland, T.J.B. and Powell, R., An internally consistent thermodynamic dataset for phases of petrological interest, J. Metamorph. Geol., 1998, vol. 16, pp. 309–344.

    Article  Google Scholar 

  24. Holland, T.J.B. and Powell, R., Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation, Contrib. Mineral. Petrol., 2003, vol. 145, pp. 492–501.

    Article  Google Scholar 

  25. Holland, T.J.B., Baker, J.M., and Powell, R., Mixing properties and activity-composition relationships of chlorites in the system MgO–FeAl2O3–SiO2–H2O, Eur. J. Mineral., 1998, vol. 10, pp. 395–406.

    Article  Google Scholar 

  26. Holmes, M.A., Evidence for continuous and discontinuous alteration of DSDP hole 418A basalts and its significance to natural gamma-ray log readings, Proc. Ocean Drill. Prog. Sci. Res., 1988, vol. 102, pp. 135–149.

    Google Scholar 

  27. Inoue, A., Meunier, A., Patrier-Mas, P., Rigault, C., Beaufort, D., and Vieillard, P., Application of chemical geothermometry to low-temperature trioctahedral chlorites, Clays Clay Miner, 2009, vol. 57, pp. 371–382.

    Article  Google Scholar 

  28. Keller, L.M., De Capitani, C., and Abart, R., A quaternary solution model for white micas based on natural coexisting phengite–paragonite pairs, J. Petrol., 2005, vol. 46, pp. 2129–2144.

    Article  Google Scholar 

  29. Lanari, P. and Duesterhoeft, E., Modeling metamorphic rocks using equilibrium thermodynamics and internally consistent databases: Past achievements, problems and perspectives, J. Petrol., 2019, vol. 60, pp. 19–56.

    Article  Google Scholar 

  30. Lanari, P., Wagner, T., and Vidal, O., A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: applications to P–T sections and geothermometry, Contrib. Mineral. Petrol., 2014, vol. 167, P. 968.

    Article  Google Scholar 

  31. Liou, J.G. and Chen, P.-Y., Chemistry and origin of chloritoid rocks from eastern Taiwan, Lithos, 1978, vol. 11, pp. 175–187.

    Article  Google Scholar 

  32. Liou, J.G., Maruyama, S., and Cho, M., Phase equilibria and mineral parageneses of metabasites in low-grade metamorphism, Mineral. Mag., 1985, vol. 49, pp. 321–333.

    Article  Google Scholar 

  33. Mahar, E.M., Baker, J.M., Powell, R., Holland, T.J.B., and Howell, N., The effect of Mn on mineral stability in metapelites, J. Metamorph. Geol., 1997, vol. 15, pp. 223–238.

    Article  Google Scholar 

  34. Maruyama, S., Liou, J.G., and Terabayashi, M., Blueschists and eclogites of thd world and their exhumation, Int. Geol. Rev., 1996, vol. 38, pp. 485–594.

    Article  Google Scholar 

  35. Mas, A., Meunier, A., Beaufort, D., Patrier, P., and Dudoignon, P., Clay minerals in basalt–hawaiite rocks from Mururoa Atoll (French Polynesia). I. Mineralogy, Clays Clay Miner., 2008, vol. 56, pp. 711–729.

    Article  Google Scholar 

  36. Massonne, H.-J. and Schreyer, W., Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz, Contrib. Miner. Petrol, 1987, vol. 96, pp. 212–224.

    Article  Google Scholar 

  37. McLean, M., Rawling, T.J., Betts, P.G., Phillips, G., and Wilson, C.J.L., Three-dimensional inversion modelling of a Neoproterozoic basin in the southern Prince Charles Mountains, Tectonophysics, 2008, vol. 456, pp. 180–193.

    Article  Google Scholar 

  38. Mikhalsky, E.V., Proterozoiskie kompleksy Vostochnoi Antarktidy: veshchestvennyi sostav I proiskhozhdenie (Proterozoic Geological Complexes of East Antarctica: Composition and Origin), St. Petersburg: VNIIOkeangeologiya, 2007.

  39. Mikhalsky, E.V., Sheraton, J.W., Laiba, A.A., Tingey, R.J., Thost, D.E., Kamenev, E.N., and Fedorov, L.V., Geology of the Prince Charles Mountains, AGSO Geosci. Australia Bull., 2001, vol. 247.

    Google Scholar 

  40. Mikhalsky, E.V., Henjes-Kunst, F., Belyatsky, B.V., Roland, N.W., and Sergeev, S.A., New Sm–Nd, Rb–Sr, U–Pb and Hf isotope systematics for the southern Prince Charles Mountains (East Antarctica) and its tectonic implications, Precambrian Res., 2010, vol. 182, pp. 101–123.

    Article  Google Scholar 

  41. Parra, T., Vidal, O., and Agard, P., A thermodynamic model for Fe–Mg dioctahedral K white micas using data from phase-equilibrium experiments and natural pelitic assemblages, Contrib. Miner. Petrol., 2002, vol. 143, pp. 706–732.

    Article  Google Scholar 

  42. Phillips, G., Wilson, C.J.L., and Fitzsimons, I.C.W., Stratigraphy and structure of the Southern Prince Charles Mountains, East Antarctica, Terra Antartica, 2005, vol. 12, pp. 69–86.

    Google Scholar 

  43. Phillips, G., Wilson, C.J.L., Campbell, I.H., and Allen, C.M., U–Th–Pb detrital zircon geochronology from the southern Prince Charles Mountainr, East Antarctica – defining the Archaean to Neoproterozoic Ruker province, Precambrian Res, 2006, vol. 148, pp. 292–306.

    Article  Google Scholar 

  44. Phillips, G., Wilson, C.J.L., Phillips, D., and Szczepanski, S.K., Thermochronological (40Ar/39Ar) evidence of Early Palaeozoic basin inversion within the Southern Prince Charles Mountains, East Antarctica: implications for East Gondwana, J. Geol. Soc. London, 2007, vol. 164.

  45. Phillips, G., Kelsey, D.E., Corvino, A.F., and Dutch, R.A., Continental reworking during overprinting orogenic events, Southern Prince Charles Mountains, East Antarctica, J. Petrol., 2009, vol. 50, pp. 2017–2041.

    Article  Google Scholar 

  46. Predovsky, A.F., Rekonstruktsiya uslovii sedimentogeneza I vulkanizm rannego dokembriya (Reconstruction of the Conditions of the Early Precambrian Sedimentogenesis and Volcanism), Leningrad: Nauka, 1980.

  47. Ravich, M.G., Soloviev, D.S., and Fedorov, L.V., Geologicheskoe stroenie Zemli Mak-Robertsona (Vostochnayay Antarktida) (Geological structure of MacRobertson Land, East Antarctica) Leningrad: Gidrometeoizdat, 1978.

  48. Rodrígues-Losada, J.A., Martinez-Frias, J., Bustillo, M.A., Delgado, A., Hernandez-Pacheco, A., de la Fuente, and Krauss, J.V., The hydrothermally altered ankaramite basalts of Punta Poyata (Tenerife, Canary Islands), J. Volcanol. Geotherm. Res., 2000, vol. 103, pp. 367–376.

    Article  Google Scholar 

  49. Sanematsu, K., Moriyama, T., Sotouky, L., and Watanabe, Y., Laterization of basalts and sandstone associated with the enrichment of Al, Ga and Sc in the Bolaven Plateau, southern Laos, Bull. Geol. Surv. Japan, 2011, vol. 62, nos. 3–4, pp. 105–129.

    Article  Google Scholar 

  50. Scheffer, C., Vanderhaeghe, O., Lanari, P., Tarantola, A., Ponthus, L., Photiades, A., and France, L., Syn to post-orogenic exhumation of metamorphic nappes: structure and thermobarometry of the western Attic-Cycladic metamorphic complex (Lavrion, Greece), J. Geodynam., 2016, vol. 96, pp. 174–193.

    Article  Google Scholar 

  51. Sklyarov, E.V., Gladkochub, D.P., Donskaya, T.V., Mazukabzov, A.M., Syzyh, A.E., and Bulanov, V.A., Metamorphism and Tectonics, Moscow: Intermet Engineering, 2001.

    Google Scholar 

  52. Vidal, O., Goffe, R., Bousquet, R., and Parra, T., Calibration and testing of an empirical chloritoid-chlorite Mg-Fe exchange thermometer and thermodynamic data for daphnite, J. Metamorph. Geol., 1999, vol. 17, pp. 25–39.

    Article  Google Scholar 

  53. Vidal, O., Parra, T., and Vieillard, P., Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: application to natural examples and possible role of oxidation, Am. Mineral., 2005, vol. 90, pp. 347–358.

    Article  Google Scholar 

  54. Vidal, O., de Andrade, V., Lewin, E., Munoz, M., Parra, T., and Pascarelli, S., P–T-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan), J. Metamorph. Geol., 2006, vol. 24, pp. 669–683.

    Article  Google Scholar 

  55. Vidal, O., Lanari, P., Munoz, M., Bourdelle, F., and de Andrade, V., Deciphering temperature, pressure and oxygen-activity conditions of chlorite formation, Clay Miner., 2016, vol. 51, pp. 615–633.

    Article  Google Scholar 

  56. White, R.W., Powell, R., Holland, T.J.B., and Worley, B.A., The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3, J. Metamorph. Geol., 2000, vol. 18, pp. 497–511.

    Article  Google Scholar 

  57. White, R.W., Powell, R., and Phillips, G.N., A mineral equilibria study of the hydrothermal alteration in mafic greenschist facies rocks at Kalgoorlie, Western Australia, J. Metamorph. Geol., 2003, vol. 21, pp. 455–468.

    Article  Google Scholar 

  58. White, R.W., Powell, R., and Holland, T.J.B., Progress relating to calculation of partial melting equilibria for metapelites, J. Metamorph. Geol., 2007, vol. 25, pp. 511–527.

    Article  Google Scholar 

  59. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  60. Wiewióra, A. and Weiss, Z., Crystallochemical classification of phyllosilicates based on the unified system of projection of chemical composition. II. The chlorite group, Clay Miner., 1990, vol. 25, pp. 83–92.

    Article  Google Scholar 

  61. Yui, T.-F., Wu, T.-W., Wang, Y., Lo, C.-H., and Lu, C.-Y., Evidence for submarine weathering from metamorphosed weathering profiles on basaltic rocks, Tananao Metamorphic Complex, Taiwan, Chem. Geol., 1994, vol. 118, pp. 185–202.

    Article  Google Scholar 

  62. Yui, T.-F., Okamoto, K., Usuki, T.LanC.Y., Chu, H.T., and Liou, J.G., Late Triassic-Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China – evidence from zircon SHRIMP dating, Int. Geol. Rev., 2009, vol. 51, pp. 304–328.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank professor Yu.B. Marin for careful reading of the manuscript and critical comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. L. Gulbin or E. V. Mikhalsky.

Additional information

Translated by I. Baksheev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulbin, Y.L., Mikhalsky, E.V. Modeling of Mineral Parageneses and Thermobarometry of Metavolcanic Rocks of the Ruker Group in the Southern Prince Charles Mountains, East Antarctica. Geol. Ore Deposits 62, 584–598 (2020). https://doi.org/10.1134/S1075701520070053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520070053

Keywords:

Navigation