Skip to main content
Log in

Wolframoixiolite in Lithium–Fluorine Granites of the Arga–Ynnakh–Khaya Pluton, Yakutia

  • MINERALS AND MINERAL PARAGENESES
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

A complex of accessory W-bearing tantalo-niobates (columbite-(Fe), columbite-(Mn), tantalite-(Mn), microlite group minerals, and Ta-bearing rutile) involving “wolframoixiolite” has been found for the first time in Li–F granite and ongonite of the Arga–Ynnakh–Khaya Pluton in East Yakutia. The rocks that contain wolframoixiolite, as well as the composition and typical features of the mineral, are described: its high Fe concentration, the leading mineral-forming role of niobium, widely variable W and Ta contents, and paragenesis with W-bearing columbite-(Mn), Ta–Nb ferberite, lepidolite, and topaz. Wolframoixiolite from the Arga–Ynnakh–Khaya Pluton is formed by polymorphic transition of columbite-(Fe) at the late stage of Li–F granite crystallization. A review of accessory mineralization in rare-metal Li–F granites of Eurasia, taking the new finding into account, indicates that wolframoixiolite is a typical accessory phase in Li–F granites and may indicate rare-metal granite magmatism accompanied with tin–rare-metal mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. The Kester Complex has been abolished from the Q-53 sheet of the State Geological Map 1000/3 and removed from the Verkhoyansk–Kolyma legend on the grounds that rare-metal granites are considered metasomatic (State …, 2016) This is contrary to the fundamentals of modern granite petrology (publications by L.V. Tauson, V.I. Kovalenko, M.I. Kuzmin, S.M. Beskin, and V.V. Yarmolyuk), the current Petrographic Codex (2009), and the data of geologists who studied the Arga–Ynnakh–Khaya pluton (Chaikovsky and Flerova (1971), Romanova (1976), Boyarshinova and Orlov (1984), Shur et al. (1988), and Trunilina (2019).

  2. The microlite group minerals were found for the first time in the district. Ta-bearing rutile was studied from albitite.

REFERENCES

  1. Agangi, A., Kamenetsky, V.S., Hofmann, A., Prybylowicz, W., and Vladykin, N.V., Crystallization of magmatic topaz and implications for Nb–Ta–W mineralization in F-rich silicic melts, the Ary-Bulak ongonite massif, Lithos, 2014, vol. 202, pp. 317–330.

    Article  Google Scholar 

  2. Alekseev, V.I. and Marin, Yu.B., Structural-chemical heterogeneity of natural crystals and the microgeochemical direction in ontogeny of minerals, Zap. Ross. Mineral. O-va, 2012, no. 1, pp. 3–21.

  3. Alekseev, V.I. and Marin, Yu.B., Tungsten accessory minerals in lithium–fluoric granites of the Russian Far East, Dokl. Earth Sci., 2014, vol. 458, no. 1, pp. 1161–1164.

    Article  Google Scholar 

  4. Alekseev, V.I., Gembitskaya, I.M., and Marin, Yu.B., Wolframoixiolite and niobium ferberite from zinnwaldite granites of Chukotka, Zap. Ross. Mineral. O-va, 2010, no. 3, pp. 72–85.

  5. Alekseev, V.I., Marin, Yu.B., and Gavrilenko, V.V., Rare-metal mineralization of Sn occurrences in the area of Li–F granites, Verkhneurmiysky ore cluster, Amur Region, Russ. J. Pac. Geol., 2019, vol. 13, no. 2, pp. 120–131.

    Article  Google Scholar 

  6. Amichba, T.M. and Dubakina L.S. Wolframoixiolite in ore from tin-tungsten deposit in Yakutia, Novoe v mieralogicheskikh issledovaniyakh (New in Mineralogical Researches), Moscow: VIMS, 1976, pp. 14–18.

    Google Scholar 

  7. Aurisicchio, C., De Vito, C., Ferrini, V., and Orlandi, P., Nb and Ta oxide minerals in the Fonte del Plete granitic pegmatite dike, Island of Elba, Italy, Can. Mineral., 2002, vol. 40, no. 3, pp. 799–814.

    Article  Google Scholar 

  8. Beurlen, H., Barreto, S.B., Silva, D., Wirth, R., and Olivier, P., Titanian ixiolite–niobian rutile intergrowths from the Borborema Pegmatitic Province, northeastern Brazil. Can. Mineral., 2007, vol. 45, pp. 1367–1387.

    Article  Google Scholar 

  9. Breiter, K., Škoda, R., and Uher, P., Nb–Ta–Ti–W–Sn-oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution: Podlesi, Czech Republic, Mineral. Petrol., 2007, vol. 91, pp. 225–248.

    Article  Google Scholar 

  10. Breiter, K., Korbelová, Z., Chládek, Š., Uher, P., Knésl, I., Rambousek, P., Honig, S., and Šešulka, V., Diversity of Ti–Sn–W–Nb–Ta oxide minerals in the classic granite related magmatic-hydrothermal Cínovec/Zinnwald Sn–W–Li deposit (Czech Republic), Eur. J. Mineral., 2017, vol. 29, no. 4, pp. 727–738.

    Article  Google Scholar 

  11. Brodskaya, R.L. and Marin, Yu.B., Ontogenetic analysis of mineral individuums and aggregates at micro- and nanolevel for the restoration of ore-forming conditions and assessment of mineral raw technological properties, J. Mining Inst., 2016, vol. 219, pp. 369–376.

    Google Scholar 

  12. Broska, I. and Kubis, M., Accessory minerals and evolution of tin-bearing S-type granites in the western segment of the Gemeric Unit (Western Carpathians), Geol. Carpathica, 2018, vol. 69, no. 5, pp. 483–497.

    Article  Google Scholar 

  13. Černý, P. and Chapman, R., Exsolution and breakdown of scandian and tungstenian Nb–Ta–Ti–Fe–Mn phases in niobian rutile, Can. Mineral., 2001, vol. 39, no. 1, pp. 93–101.

    Article  Google Scholar 

  14. Černý, P., Novák, M., Chapman, R., and Ferreira, K.J., Subsolidus behavior of niobian rutile from the Písek region, Czech Republic: a model for exsolution in W- and Fe2+ \( \gg \) Fe3+-rich phases, J. Geosci., 2007, vol. 52, nos. 1–2, pp. 143–159.

    Google Scholar 

  15. Chalal, Y. and Marignac, Ch., Découverte de wolframoixiolite dans les microgranites à albite-topaze d’Aleméda (Hoggar central, Algérie): implications métallogeniques, Bull. Serv. Geol. L’Alggérie, 1997, vol. 8, no. l, pp. 71–79.

  16. Flerov, B.L., Indolev, L.N., Yakovlev, Y.V., and Bichus, B.Y., Geologiya i gnenezis olovorudnykh mestorozhdenii Yakutii (Geology and Genesis of Tin Ore Deposits in Yakutia, Moscow: Nauka, 1971.

  17. Ginzburg, A.I., Gorzhevskaya, S.A., and Sidorenko, G.A., Wolframoixiolite—a variety of ixiolite, Zap. Ross. Mineral. O-va, 1969, vol. 98, no. 1, pp. 63–73.

  18. Harlaux, M., Marignac, Ch., Cuney, M., Mercadier, J., Magott, R., and Mouthier, B., Nb–Ti–Y–HREE–W–U oxide minerals with uncommon compositions associated with the tungsten mineralization in the Puy-Les-Vignes deposit (massif Central, France): evidence for rare-metal mobilization by late hydrothermal fluids with a peralkaline signature, Can. Mineral., 2015, vol. 53, no. 4, pp. 653–672.

    Article  Google Scholar 

  19. Hien-Dinh, T.T., Dao, D.A., Tran, T., Wahl, M., Stein, E., and Giere, R., Lithium-rich albite-topaz-lepidolite granite from Central Vietnam: a mineralogical and geochemical characterization, Eur. J. Mineral., 2017, vol. 29, no. 1, pp. 35–52.

    Article  Google Scholar 

  20. Johan, V. and Johan, Z., Accessory minerals of the Cίnovec (Zinnwald) granite cupola, Czech Republic. Part 1: Nb-, Ta- and Ti-bearing oxides, Mineral. Petrol., 1994, vol. 51, pp. 323–343

    Article  Google Scholar 

  21. Kesraoui, M. and Nedjari, S., Contrasting evolution of low-P rare metal granites from two different terranes in the Hoggar area, Algeria, J. Afr. Earth Sci., 2002, vol. 34, nos. 3–4, pp. 247–257.

    Article  Google Scholar 

  22. Kokunin, M.V., Rare minerals of the forgotten deposit, Native Geol., 2011, vol. 1, pp. 72–82.

    Google Scholar 

  23. Kornetova V.A., Borisovsky S.E., Boyarskaya R.V., Malov V.S. About the nature of wolframoixiolite, In: Novye danney o mineralakh (New Data on Minerals), Moscow: Nauka, 1982, vol. 30, pp. 117–130 (in Russian).

  24. Letnikov, F.A., Topaz granites in Northern Kazakhstan, Petrology, 2008, vol. 16, no. 4, pp. 319–334.

    Article  Google Scholar 

  25. Marignac, Ch., Belkasmi, M., Chalal, Y., and Kesraoui, M., W–Nb–Ta oxides as markers of the magmatic to hydrolhermal transition condition in rare-metal granites, In: Mineral Deposits at the Beginning of the 2lst Century, Adam Piestrzynski , Eds., Netherlands: Swets & Zeitlinger Publishers Lisse, 2001, pp. 441–448.

    Google Scholar 

  26. Melcher, F., Graupner, T., Gabler, H.E., Sitnikova, M., Oberthur, T., Gerdes, A., Badanina, E., and Chudy, T., Mineralogical and chemical evolution of tantalum–(niobium–tin) mineralisation in pegmatites and granites. Part 2: Worldwide examples (excluding Africa) and an overview of global metallogenetic patterns, Ore Geol. Rev., 2017, vol. 89, pp. 946–987.

    Article  Google Scholar 

  27. Nedosekin, Yu.D., Redkometal’nye granity Severo-Vostoka SSSR (Rare-Metal Granites in Northeast USSR), Moscow: Nauka, 1988.

  28. Nickel, E.H., Rowland, J.F., and McAdam, R.C., Ixiolite – a columbite substructure, Am. Mineral., 1963, vol. 48, pp. 961–979.

    Google Scholar 

  29. Novák, M., Johan, Z., Skoda, R., Cerny, P., Srein, V., and Veselovsky, F., Primary oxide minerals in the system WO3–Nb2O5–TiO2–Fe2O3–FeO and their breakdown products from the pegmatite N 3 at Dolní Bory-Hate, Czech Republic, Eur. J. Mineral., 2008, vol. 20, no. 4, pp. 487–499.

  30. Orlov, Y.S., Filimonov, Y.A., and Boyarshinov, V.V., Revisited on genesis of alaskaite in Arga–Ynnah–Haysky massif (East Yakutia), In: Geologiya in poleznye iskopaemye Verkhoyano-Kolymskoi skladchatoi sistemy (Geology and Minerals of the Verkhoyansk–Kolyma Fold System), Yakutsk: Yakutsk Knizh Izd-vo, 1984, pp. 74–81 (in Russian).

  31. Peretyazhko, I.S., Zagorsky, V.E., Tsareva, E.A., and Sapozhnikov, A.N., Immiscibility of calcium fluoride and aluminosilicate melts in ongonite from the Ary–Bulak intrusion, Eastern Transbaikal Region, Dokl. Earth Sci., 2007, vol. 413, no. 2, pp. 315–320.

    Article  Google Scholar 

  32. Raimbault, L. and Burnol, L., The Richemont rhyolite dyke, Massif Central, France: A subvolcanic equivalent of rare-metal granites, Can. Mineral., 1998, vol. 36, pp. 265–282.

    Google Scholar 

  33. René, M., Nb–Ta–Ti Oxides in Topaz Granites of the Geyer Granite Stock (Erzgebirge Mts., Germany). In: Papers 1st Int. Electronic Conf. Mineral Sci., Basel, Switzerland, 2018, Basel: www.sciforum.net, 2018, pp. 1–12.

  34. Romanova, M.A. Markov properties of grains sequences in rare-metal granites, their use at prospecting works and petrological researches, In Geologicheskaya Informatsiya i matematicheskaya geologiya. Mezhdunarodnyi geologicheskii kongress. XXV sessiya (The Geological Information and Mathematical Geology. The International Geological Congress. XXV Session), Moscow: Nedra, 1976, pp. 53–65.

  35. Rub, A.K. and Rub, M.G., Redkometall’nye granite Primor’ya (Rare-Metal Granites of Primorye), Moscow: VIMS, 2006.

  36. Saleh, G.M., El Galy, M.M., and Obeid, M.A., Geochemical characteristics and spectrometric prospecting in the muscovite-bearing pegmatites and granites, southeastern Aswan, Egypt, Chin. J. Geochem., 2008, vol. 27, no. 1, pp. 9–20.

    Article  Google Scholar 

  37. Gosudarstvennaya Geologicheskaya Karta Rossiskoi Federatsii. Masshtab 1 : 10 000 000 (tret’e pokolenie. Ob’yasnitel’naya zapiska) (State Geological Map of Russian Federation. Scale 1 : 1 000 000 (the Third Generation). A Series Verkhoyansk-Kolyma. Sheet Q-53—Verkhoyansk. Explanatory Note), Kalashnikov, V.V., Ed., St. Petersburg: VSEGEI, 2016.

  38. Suwimonprecha, P., Černý, P., and Friedrich, G., Rare metal mineralization related to granites and pegmatites, Phuket, Thailand, Econ. Geol., 1995, vol. 90, no. 3, pp. 603–615.

    Article  Google Scholar 

  39. Trunilina, V.A., Orlov, Yu.S., Zaitsev, A.I., and Roev, S.P., High-phosphorous lithium–fluorine granites of eastern Yakutia (Verkhoyansk–Kolyma orogenic region), Russ. J. Pac. Geol., 2019, vol. 38, no. 1, pp. 64–79.

    Google Scholar 

  40. Tsareva, G.M., Naumov, V.B., Kovalenko, V.I., Tsepin, A.I., and Andreeva, I.A., Magmatic cassiterite, wolframite, columbite, and wolframoixiolite in the Volyn miarolitic pegmatites: data on inclusions in topaz, Dokl. Akad. Nauk, 1993, vol. 330, no. 3, pp. 366–368.

    Google Scholar 

  41. Urusov, V.S., Teoreticheskaya kristallokhimiya (Theoretical Crystal Chemistry), Moscow: Moscow State University, 1987.

  42. Voloshin, A.V. and Pahomovskiy, Y.A., Moineralogiya tantala I niobiya v redkometal’nykh pegmatitakh (Mineralogy of Tantalum and Niobium in Rare-Metal Pegmatites), Leningrad: Nauka, 1986.

  43. Wang, R.Ch., Fontan, F., and Monchoux, P., Mineraux dissemines comme indicateurs du caractere pegmatitique du granite de Beauvoir, Massif dEchassieres, Allier, France, Can. Mineral., 1992, vol. 30, pp. 763–770.

    Google Scholar 

  44. Wise, M.A., Cerny, P., and Falster, A.U., Scandium substitution in columbite-group minerals and ixiolite, Can. Mineral., 1998, vol. 36, pp. 673–680.

    Google Scholar 

  45. Xie, L., Wang, Z.J., Wang, R.C., Zhu, J.C., Che, X.D., Gao, J.F., and Zhao, X., Mineralogical constraints on the genesis of W–Nb–Ta mineralization in the Laiziling granite (Xianghualing district, south China), Ore Geol. Rev., 2018, vol. 95, pp. 695–712.

    Article  Google Scholar 

  46. Zhang, W.L., Hua, R.M., and Wang, R.C., Intergrowth of wolframoixiolite and W-rich manganocolumbite in Dajishan Tungsten deposit, Jiangxi Province, South China, Miner. Deposits, 2003, vol. 22, no. 2, pp. 158–165.

    Google Scholar 

  47. Zhao, X., Lu, J., and Wang, R.C., Petrographic and mineral chemical characteristics of the Jianfengling granite stock in the Nanling Range, South China: insights into the evolution of a highly evolved Li-Fgranitic magma, In: Proc. 14th SGA Biennial Meeting Miner. Resources to Discover, Quebec City, Canada, 2017, pp. 1387–1390.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Alekseev.

Additional information

Translated by I. Baksheev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, V.I., Marin, Y.B. & Galankina, O.L. Wolframoixiolite in Lithium–Fluorine Granites of the Arga–Ynnakh–Khaya Pluton, Yakutia. Geol. Ore Deposits 62, 629–637 (2020). https://doi.org/10.1134/S1075701520070028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520070028

Keywords:

Navigation