Skip to main content
Log in

Gold and Silver Minerals in Sulfide Ore

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract—Gold and silver are capable of forming stable natural compounds with different elements. For gold 36 minerals are known: 10 in the class “Native metals, intermetallic compounds” and 26 in the class “Sulfides (selenides, tellurides, arsenides, antimonides, bismuthides).” For silver, 194 minerals are registered in the MMA, presented in 8 classes. Compared to gold in the class “Native metals, intermetallic compounds” there are far fewer silver minerals. They are widely represented in the classes “Sulfides” and “Sulfosalts” (124). Among silver minerals “halides” are also known (fluorides, chlorides, bromides, iodides), seven; simple and complex oxides, two; there is one mineral each in the classes “sulfates,” “phosphates,” “arsenates,” and “vanadates.” Both metals are in the compositions of 12 minerals: native gold, native silver, weishanite, uytenbogaardtite, petrovskaite, fishesserite, penzhinite, petzite, mutmannite, sylvanite, krennerite, and bezsmertnovite. Every year, the MMA commission registers four to six gold and silver minerals, so there are prospects for the discovery of new minerals of these precious metals in the near future. The indicator elements (fixers) that form natural compounds with gold and indicate the possible presence of gold minerals in sulfide ores include 13 elements: 7 metals (Ag, Cu, Pd, Hg, Sn, Tl, Fe), 3 chalcogens (Te, S, Se), and 3 metalloids (As, Sb, Bi). For silver, this range is wider and also includes such elements as Mn, Zn, Ge, Cd, V, O, H, F, Cl, Br, I, In, and N. This review presents and summarizes the results of studies on the composition of native gold with copper, mercury, and palladium impurities in different types of gold deposits. The article describes the gold and silver minerals established by the author together with colleagues in a study of productive mineral assemblages in some gold deposits in Russia: the Ulakhan, Yunoe, Krutoe, Dzhulietta, Dorozhnoe (Magadan region), Konechnoe (Taimyr Peninsula), Kupol, Valunistoe (Chukotka), Maletoyvayam (Kamchatka), etc. Data are presented on gold and silver minerals found in sulfide ores and of economic importance. Some of their technological properties are characterized, including solubility and behavior under the influence of various reagents. The presence of refractory minerals (calaverite, sylvanite, krennerite, petzite, aurostibite, maldonite, fishesserite, uytenbogaardtite, petrovskaite, penzhinite, weishanite, yuanjianite, hunchunite, anyuite, krynovite, nadjagite, and bogdanovite, bilibinskite, criddleite, etc.), as well as the chemical composition gold and silver, are important technological factors and should be taken into account when developing a technology for extracting precious metals from ores. The presence of increased concentrations of indicator elements (fixers) of gold and silver minerals in sulfide ores is an important indicator and argument for detailed mineralogical and geochemical studies of the source raw material. Identification of mineral (micro-, nano-) forms of gold and silver in sulfide ores is necessary for developing and improving rational dressing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Amuzinskii, V.A., Anisimova G.S., and Zhdanov, Yu.Ya., Samorodnoe zoloto Yakutii (Native Gold of Yakutia), Novosibirsk: Nauka, 1992.

  2. Anikina, E.V. and Alekseev, A.V., Mineralogical-geochemical characteristics of gold–palladium mineralization in the Volkovskoe gabbro–diorite massif (Platinum Belt of the Urals), Litosfera, 2010, no. 5, pp. 75–100.

  3. Anikina, E.Yu., Bortnikov, N.S., Klubnikin, G.K., Gamyanin, G.N., and Prokof’ev, V.Yu., The Mangazeya Ag–Pb–Zn vein deposit hosted in sedimentary rocks, Sakha-Yakutia, Russia: mineral assemblages, fluid inclusions, stable isotopes (C, O, S), and origin, Geol. Ore Deposits, 2016, vol. 58, no. 3, pp. 182–212.

    Article  Google Scholar 

  4. Anisimova, G.S., Kondrat’eva, L.A., and Leskova, N.V., Sulfide compounds of gold and silver in gold deposits of East Yakutia, Otechestvennaya Geol., 2008, no. 5, pp. 24–32.

  5. Asamoah, R.K., Amankwah, R.K., and Addai-Mensah, J., Cyanidation of refractory gold ores: a review, 3rd UMaT Biennial International Mining and Mineral Conference, 2014, pp. 204–212.

  6. Asamoah, R.K., Zanin, M., Gascooke, J., Skinner, W., and Addai-Mensah, J., Refractory gold ores and concentrates, part 1: mineralogical and physico-chemical characteristics, Mineral Processing and Extractive Metallurgy, 2019, pp. 1–13.

  7. Ashley, P.M., Cook, N.D.J., and Hill, R.L., Occurrence and signicance of aurostibite in Sb–Au ore from Hillgrove, New South Wales, Australia, Neues Jahrb. Mineral Monatsh., 1990, no. 12, pp. 537–551.

  8. Barton, M.D., Kieft, C., Burke, E.A.J., and Oen, I.S., Uytenbogaardtite, a new silver–gold sulfide, Can. Mineral., 1978, vol. 16, pp. 651–657.

    Google Scholar 

  9. Benevol’skii, B.I., Myzenkova, L.F., and Avgustinchik, I.A., Mineral-raw base of noble metals: retrospective and prediction, Rudy Met., 2007, no. 3, pp. 25–91.

  10. Berni, G.V., Heinrich, C.A., Lobato, L.M., and Wall, V., Ore mineralogy of the Serra Pelada Au–Pd–Pt deposit, Carajas, Brazil and implications for ore-forming processes, Miner. Deposita, 2016, vol. 51, pp. 781–795.

    Article  Google Scholar 

  11. Biagioni, C., George, L.L., Cook, N.J., Makovicky, E., Moelo, Y., Pasero, M., Sejkora, J., Stanley, C.J., Mark, W.D.H., and Bosi, F., The tetrahedrite group: nomenclature and classification, Am. Mineral., 2020, vol. 105, no. 1, pp. 109–122.

    Article  Google Scholar 

  12. Bindi, L. and Pingitore, N.E., On the symmetry and crystal structure of aguilarite, Ag4SeS, Mineral. Mag., 2013, vol. 77, pp. 21–31.

    Article  Google Scholar 

  13. Bocharov V.A., and Abryutin D.V. Tekhnologiya zolotosoderzhashchikh rud (Technology of Gold Ores), Moscow: Izdatel’skii Dom MISiS, 2011.

  14. Borisenko, A.S., Naumov, E.A., Obolensky, A.A., Types of gold–mercury deposits and their formation conditions, Russ. Geol. Geophys., 2006, vol. 47, no. 3, pp. 342–354.

    Google Scholar 

  15. Borisov, A.V., Geological-Genetic Features of Au–Pd–REE Occurrences of the Maldynyr Range, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, Moscow: MGU, 2005.

  16. Bortnikov, N.S., Gamyanin, G.N., Alpatov, V.A. Naumov, V.B., Nosik, L.P., and Mironova, O.F., Mineralogy, geochemistry and origin of the Nezhdaninsk gold deposit (Sakha-Yakutia, Russia), Geol. Ore Deposits, 1998, vol. 40, no. 2, pp. 121–138.

    Google Scholar 

  17. Bortnikov N.S., Gamyanin G.N., Vikent’eva O.V., Prokof’ev V.Yu., and Prokop’ev A.V., The Sarylakh and Sentachan gold–antimony deposits, Sakha-Yakutia: a case of combined mesothermal gold–quartz and epithermal stibnite ores, Geol. Ore Deposits, 2010, vol. 52, no. 5, pp. 339–372.

    Article  Google Scholar 

  18. Bortnikov, N.S., Cabri, L., Vikent’ev, I.V., McMahon, G.M., and Bogdanov, Yu.A., Invisible gold in sulfides from recent submarine hydrothermal mounds, Dokl. Earth Sci., 2000, vol. 373, no. 5, pp. 863–866.

    Google Scholar 

  19. Bortnikov N.S., Cabri L.J, Vikentiev, I.V., Tagirov, B.R., Mc Mahon, G., Bogdanov, Yu.A., and Stavrova, O.O., Invisible gold in sulfides from seafloor massive sulfide edifices, Geol. Ore Deposits, 2003, vol. 45, no. 3, pp. 201–212.

    Google Scholar 

  20. Bortnikov, N.S., Kramer, Kh., Genkin, A.D., Krapiva, L.Yu., and Kruz, M.S., Parageneses of gold and silver tellurides in the Florensiya gold deposit, (Cuba Republic), Geol. Rudn. Mestorozhd., 1988, no. 2, pp. 49–61.

  21. Bortnikov N.S., Mochalov A.G., and Cherkashev G.A., Native Minerals and Intermetallides of Noble and Nonferrous Metals in Sediments of the Markov Deep, Mid-Atlantic Ridge, Dokl. Earth Sci., 2006, vol. 409A, no. 6, pp. 929–934.

    Article  Google Scholar 

  22. Boyle, R.W., The geochemistry of silver and its deposits, Geol. Surv. Canada,Bull., 1968, vol. 160, 264 p.

    Google Scholar 

  23. Boyle, R.W., The geochemistry of gold and its deposits, Geol. Surv.Canada,Bull., 1979, vol. 280, 584 p.

    Google Scholar 

  24. Bürg, G.H., Natur des in den pyriten nicht sichtbar enthaltenen goldes, Z. Prakt. Geol., 1935, vol. 43, pp. 17–32.

    Google Scholar 

  25. Buryak, V.A. and Bakulin, Yu.I., Metallogeniya zolota (Gold Metallogeny), Vladivostok: Dal’nauka, 1998.

  26. Cabral, A.R., Lehmann, B., Kwitko, R., and Cravo Costa, C.H., The Serra Pelada Au–Pd–Pt deposit, Carajas mineral province, northen Brazil: reconnaissance mineralogy and chemistry of very-high-grade palladian gold mineralization, Econ. Geol., 2002, vol. 97, pp. 1127–1138.

    Google Scholar 

  27. Cabral, A.R., Lehmann, B., Kwitko-Ribeiro, R., Jones, R.D., and Rocha Filho, O.G., On the association of Pd-bearing gold, hematite and gypsum in an Ouro Preto nugget, Can. Mineral., 2003, vol. 41, pp. 473–478.

    Article  Google Scholar 

  28. Cabral, A.R., Tupinamba, M., Lehmann, B., Kwitko-Ribeiro, R., and Vymazalova, A., Arborescent palladiferous gold and empirical Au2Pd and Au3Pd in alluvium from southern Serra do Espinha,co, Brazil, Neues Jahrb. Miner., Abh., 2008, vol. 184, no. 3, pp. 329–336.

    Google Scholar 

  29. Cabral, A.R., Vymazalova, A., Lehman, B., Tupinamba, M., Haloda, J., Laufek, F., Vlcek, V., and Kwitko-Ribeiro, R., Poorly crystalline Pd–Hg–Au intermetallic compounds from C’orrego Bom sucesso, southern Serra do Espinha, co, Brazil, Eur. J. Mineral., 2009, vol. 21, no. 4, pp. 811–816.

    Article  Google Scholar 

  30. Cabri, L.J., Newville, M., Gordon, R.A., Daryl, CrozierE., Sutton, S.R., Mcmahon, G., and Jiang, D.T., Chemical speciation of gold in arsenopyrite, Can. Mineral., 2000, vol. 38, pp. 1265–1281.

    Article  Google Scholar 

  31. Celep, O., Yazici, E.Y., Altinkaya, P., and Deveci, H., Characterization of a refractory arsenical silver ore by mineral liberation analysis (MLA) and diagnostic leaching, Hydrometallurgy, 2019, vol. 189, pp. 105–106.

    Article  Google Scholar 

  32. Chapman, R.J., Leake, R.C., Bond, D.P.G., Stedra, V., and Fairgrieve, B., Chemical and mineralogical signatures of gold formed in oxidizing chloride hydrothermal systems and their significance within populations of placer gold grains collected during reconnaissance, Econ. Geol., 2009, vol. 104, pp. 563–585.

    Article  Google Scholar 

  33. Chernyshov, N.M., Noble metals in interiors of Central Russia: geological–genetic types of deposits and occurrences, speciation, and prospects of development. Paper 1. Gold–platimun-bearing quartzites and their anthropogenic products of KMA giant deposits, Vestn. Voronezh. Gos. Univ. Ser: Geol., 2017, no. 2, pp. 94–106.

  34. Chernyshov, N.M. and Reznikova, O.G., Noble metal speciation in different types of BIFs and their metasomatites, the Lebedinskoe and Stoilenskoe deposit, Vestn. Voronezh. Gos. Univ. Ser: Geol., 2010, no. 1, pp. 135–144.

  35. Chryssoulis, S.L. and Cabri, L.J., Significance of gold mineralogical balances in mineral processing, Trans. Inst. Min. Metall. (Sect. C: Mineral Process. Extr. Metall.), 1990, no. 99, pp. 1–10.

  36. Chryssoulis, S.L. and McMullen, J., Mineralogical investigation of gold ores, Project Development Developments in Mineral Processing, 2016, pp. 57–93.

    Book  Google Scholar 

  37. Chudnenko, K. and Pal’yanova, G., Thermodynamic properties of Au–Hg binary solid solution, Thermochim. Acta, vol. 566, pp. 175–180.

  38. Chudnenko, K. and Pal’yanova, G., Thermodynamic properties of Ag–Au–Hg solid solutions, Thermochim. Acta, vol. 572, pp. 65–70.

  39. Chudnenko, K.V. and Pal’yanova, G.A., Thermodynamics of solid solutions in the Au–Ag–Su system, Russ. Geol. Geophys., 2014, vol. 55, no. 3, pp. 349–360.

    Article  Google Scholar 

  40. Chudnenko, K.V., Pal’yanova, G.A., Anisimova, G.S., and Moskvitin, S.G., Ag–Au–Hg solid solutions and physicochemical models of their formation in nature (Kyuchyus deposit as an example), Appl. Geochem., 2015, vol. 55, pp. 138–151.

    Article  Google Scholar 

  41. Chudnenko, K.V. and Pal’yanova, G.A., Thermodynamic modeling of native formation Au–Ag–Au–Hg solid solutions, Appl. Geochem., 2016, vol. 66, pp. 88–100.

    Article  Google Scholar 

  42. Ciobanu, C.L., Cook, N.J., Utsunomiya, S., Kogagwa, M., Green, L., Gilbert, S., and Wade, B., Gold-telluride nanoparticles revealed in arsenic-free pyrite, Am. Mineral., 2012, vol. 97, pp. 1515–1518.

    Article  Google Scholar 

  43. Clark, A.M. and Criddle, A.J., Palladium minerals from Hope’s Nose, Torquay, Devon, Mineral. Mag., 1982, vol. 46, pp. 371–377.

    Article  Google Scholar 

  44. Climo, M., Watling, H.R., and Van Bronswijk, W., Biooxidation as pre-treatment for a telluride-rich refractory gold concentrate, Miner. Eng., 2000, vol. 13, pp. 1219–1229.

    Article  Google Scholar 

  45. Cocker, H.A., Mauk, J.L., and Rabone, S.D.C., The origin of Ag–Au–S–Se minerals in adularia-sericite epithermal deposits: constraints from the Broken Hills deposit, Hauraki goldfield, New Zealand, Miner. Deposita, 2013, vol. 48, pp. 249–266.

    Article  Google Scholar 

  46. Cook, N.J. and Chryssoulis, S.L., Concentrations of invisible gold in the common sulphides, Can. Mineral., 1990, no. 28, pp. 1–16.

  47. Cook, N.J., Ciobanu, C.L., Spry, P.G., and Voudouris, P., Understanding gold–(silver)–telluride–(selenide) mineral deposits, Episodes, 2009, vol. 32, pp. 249–263.

    Article  Google Scholar 

  48. Damdinov B.B., Mironov A.G., Borovikov A.A., Guntypov B.B., Karmanov N.S., Borisenko A.S., and Garmaev B.L., Composition and conditions of formation of gold–telluride mineralization in the Tissa-Sarkhoi gold-bearing province (East Sayan), Russ. Geol. Geophys., 2007, vol. 48, no. 8, pp. 643–655.

    Article  Google Scholar 

  49. Deschênes, G., Pratt, A., Fulton, M., and Guo, H., Kinetics and mechanisms of leaching synthetic calaverite in cyanide solutions, Miner. Metall. Process. J, 2006, vol. 3, no. 23, pp. 133–138.

    Google Scholar 

  50. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase Diagram of Double Metallic Systems), Lyakishev, N.P., Eds., Moscow: Mashinostroenie, 1996, vol. 1.

    Google Scholar 

  51. Distanov, E.G., Stebleva, A.T., Obolensky, A.A., Kochetkova, K.V., and Borisenko, A.S., Genesis of the Uderei gold–stibium deposit in the Yenisei Ridge, Geol. Geofiz., 1975, no. 8, pp. 19–27.

  52. Dyusembaeva, K.Sh., Levin, V.L., Kotel’nikov, P.E., and Bekenova, B.K., Novodneprite AuPb3 – a new mineral from the Novodneprovskoe deposit, North Kazakhstan), Dokl. Nats. Akad. Nauk. Respubl. Kazakhstan, 2006, no. 5, pp. 46–50.

  53. Ellis, S., Treatment of gold-telluride ores, Dev. Miner. Process, 2005, vol. 15, pp. 973–984.

    Google Scholar 

  54. Fersman, A.E., Zanimatel’naya mineralogiya (Amusing Mineralogy), Sverdlovskoe knizhnoe izdatel’stvo, 1954.

  55. Gammons, C.H. and Williams-Jones, A.E., Hydrothermal geochemistry of electrum: thermodynamic constraints, Econ. Geol., 1995, vol. 90, pp. 420–432.

    Article  Google Scholar 

  56. Gamyanin, G.N., Alpatov, V. V., Anikina, E.Yu., Bortnikov, N.S., Nosik, L.P., and Borisenko, A.S., The Prognoz silver–polymetallic deposit, Sakha: mineralogy, geochemistry, and origin, Geol. Ore Deposits, 1998, vol. 40, no. 5, pp. 391–407.

    Google Scholar 

  57. Gas’kov, I.V., Major impurity elements in native gold and their association with gold mineralization settings in deposits of Asian fold belts, Russ. Geol. Geophys., 2017, vol. 58, no. 9, pp. 1080–1092.

    Article  Google Scholar 

  58. Gavshin, V.M., Causes of origin of native elements at the lithosphere surface, Dokl. Akad. Nauk SSSR, 1968, vol. 180, no. 2, pp. 442–445.

    Google Scholar 

  59. Genkin, A.D., Bortnikov, N.S., Cabri, L.J., Wagner, F.E., Stanley, C.J., Safonov, O.G., McMahon, G., Friedl, J., Kerzin, A.L., and Gamyanin, G.N., A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation, Econ. Geol., 1998, vol. 93, pp. 463–487.

    Article  Google Scholar 

  60. Gerasimov, B.B., Nikiforova, Z.S., and Pavlov, V.I., Mineralogical-geochemical features of gold of the Bol’shaya Kuonamka placer, Nauka Obrazov., 2014, no. 3 (75), pp. 74–78.

  61. El Ghorfi, M., Oberthur, T., Melcher, F., Luders, V., El Boukhari, A., Maacha, L., Ziadi, R., and Baoutoul, H., Gold-palladium mineralization at Bleida Far West, Bou Azzer-el Graara inlier, Anti-Atlas, Morocco, Miner. Deposita, 2006, vol. 41, pp. 549–564.

    Article  Google Scholar 

  62. Gold Ore Processing. Project Development and Operations, 2nd Edition, 2016. https://www.sciencedirect.com/book/9780444636584/gold-ore-processing

  63. Goodall, W.R. and Scales, P.J., An overview of the advantages and disadvantages of the determination of gold mineralogy by automated mineralogy, Miner. Eng., 2007, no. 20, pp. 506–517.

  64. Harris, D.C., The mineralogy of gold and its relevance to gold recoveries, Miner. Deposita, 1990, no. 25.

  65. Henley, K.J., Clarke, N.C., and Sauter, P., Evaluation of a diagnostic leaching technique for gold in native gold and gold ± silver tellurides, Miner. Eng., 2001, no. 14, pp. 1–12. http://industrial-wood.ru/tehnologiya-izvlecheniya/11250- povedenie-metallicheskogo-zolota-i-serebra-v-processe-obzhiga-sulfidnyh-rud-koncentratov.html

  66. http://metal-archive.ru/metallurgiya-zolota-i-serebra/2576-zolotosoderzhaschie-rudy-i-mineraly.html

  67. http://onznews.wdcb.ru/ebooks/minerageny/chap_2.1.1.pdf

  68. http://www.kolasc.net.ru/russian/news/vestnik1.html

  69. https://archive-gold.1prime.ru/Aurum79/nature/tbl_au.html

  70. https://rruff. info/gold https://rruff.info/silver

  71. Jones, R.S. and Fleischer, M., Gold in Minerals and the Composition of Native Gold, 1969, no. 612.

  72. Kalinin, Y.A., Palyanova, G.A., Naumov, E.A., Kovalev, K.R., and Pirajno, F., Supergene remobilization of Au in Au-bearing regolith related to orogenic deposits: a case study from Kazakhstan, Ore Geol. Rev., 2019, vol. 209, pp. 358–369.

    Article  Google Scholar 

  73. Koneev, R.I., Nanomineralogiya zolota epitermal’nykh mestorozhdenii Chatkalo-Kuramskogo regiona (Uzbekistan) (Gold Nanomineralogy of Epithermal Deposits of the Chatkala–Kurama Region, Uzbekistan), Sankt-Peterburg: Del’ta, 2006.

  74. Koneev, R.I., Khalmatov, R.A., and Krivosheeva, A.N., Speciation and micronanoensembles of gold as indicators of conditions of formation, distribution, and typification of orogenic deposits of Uzbekistan (South Tien Shan), Zap. Ross. Mineral.O-va, 2019, vol. 148, no. 4, pp. 30-45.

    Google Scholar 

  75. Konstantinov, M.M., Nekrasov, E.M., Sidorov, A.A., and Struzhkov, S.F., Zolotorudnye giganty Rossii i mira (Gold Giants of Russia and World), Moscow: Nauchnyi mir, 2000.

  76. Kotlyar, Yu.A., Meretukov, M.A., and Strizhko, A.S., Metallurgiya blagorodnykh metallov (Metallurgy of Noble Metals), Moscow: MISIS, 2005.

  77. Kovalchuk, E.V., Tagirov, B.R., Vikentyev, I.V., Chareev, D.A., Tyukova, E.E., Nikolsky, M.S., Borisovsky, S.E., and Bortnikov, N.S., “Invisible” gold in synthetic and natural arsenopyrite crystals, Vorontsovka Deposit, Northern Urals, Geol. Ore Deposits, 2019, vol. 61, no. 5, pp. 447–468.

    Article  Google Scholar 

  78. Kovalenker, V.A., Plotinskaya, O.Yu., Prokof’ev, V.Yu., Gertman, Yu.L., Koneev, R.I., and Pomortsev, V.V., Mineralogy, geochemistry, and genesis of gold–sulfide–selenide–telluride ores from the Kairagach Deposit (Uzbekistan), Geol. Ore Deposits, 2003, vol. 45, no. 3, pp. 171–200.

    Google Scholar 

  79. Kovalenker, V.A., Safonov, Yu.G., Naumov, V.B., and Rusinov, V.L., The epithermal gold–telluride Kochbulak Deposit (Uzbekistan), Geol. Ore Deposits, 1997, vol. 39, no. 2, pp. 107–128.

    Google Scholar 

  80. Kovalenker, V.A., Plotinskaya, O.Y., Stanley, C.J., Roberts, A.C., McDonald, A.M., and Cooper, M.A., Kurilite - Ag8Te3Se—a new mineral from the Prasolovskoe deposit, Kuril Islands, Russian Federation, Mineral. Mag., 2010, no. 74, pp. 463–468.

  81. Krivovichev, V.G., Mineralogicheskii slovar (Mineralogical Glossary), St. Petersburg: S.-Petesrb. Univ., 2008.

  82. Kucha, H., Precious metal alloys and organic matter in the Zechstein copper deposits, Poland, Tschermaks Mineral. Petrogr. Mitt., 1981, vol. 28, pp. 1–16.

    Article  Google Scholar 

  83. Kuznetsov, S.K., Maiorova, T.P., Shaibekov, R.I., Sokerina, N.V., and Filippov, V.N., Mineral composition and conditions of formation of gold–platium–palladium occurrences of the north Urals and Pai-Khoy, Blagorodnye, redkie i radioaktivnye elementy v rudoobrazuyushchikh sistemakh: Vseros. nauch. konf. s mezhdunar. uchast, Novosibirsk,2014 (Noble, Trace, and Radioactive Elemente sin Ore-Forming Systems. Proc. All-Russian Conference with International Participation), Novosibirsk, 2014, pp. 342–347.

  84. Kuznetsov, S.K., Onishchenko, S.A., Kotel’nikov, V.G., and Filippov, V.N., Copper–gold–palladium mineralization in ultrabasic rocks of the Polar Urals, Dokl. Earth Sci., 2007, vol. 414, no. 4, pp. 501–503.

    Article  Google Scholar 

  85. Kuznetsov, S.K., Shevchuk, S.S., Vokuev, M.V., and Kovalevich, R.S., epigenetic palladium mineralization in ultrabasic rocks of the Voikary–Syninskii Massif (Polar Urals), Dokl. Earth Sci., 2013, vol. 451, no. 2, pp. 855–857.

    Article  Google Scholar 

  86. Letnikov, F.A. and Vilor, N.V., Zoloto v gidrotermal’nom protsesse (Gold in Hydrothermal Process), Moscow: Nedra, 1981.

  87. Liang, Y. and Hoshino, K., Thermodynamic calculations of AuxAg1 – x—fluid equilibria and their applications for ore-forming conditions, Appl. Geochem., 2015, vol. 52, pp. 109–117.

    Article  Google Scholar 

  88. Liu, J.L., Zhao, S.J., Cook, N.J., Bai, X.D., Zhang, Z.C., Zhao, Z.D., Zhao, H.B., and Lu, J., Bonanza-grade accumulations of gold tellurides in the Early Cretaceous Sandaowanzi deposit, Northeast China, Ore Geol. Rev., 2013, vol. 54, pp. 110–126.

    Article  Google Scholar 

  89. Lodeishchikov, V.V., Tekhnologiya izvlecheniya zolota i serebra iz upornykh rud (Technology of Gold Extraction from Refractory Ores), Irkutsk: OAO Irgiredmet, 1999.

  90. Luna-Sánchez, R.M. and Lapidus, G.T., Cyanidation kinetics of silver sulfide, Hydrometallurgy, 2000, vol. 56, pp. 171–188.

    Article  Google Scholar 

  91. Luna-Sánchez, R.M. and Lapidus, G.T., Mathematical model of the aguilarite (Ag4SeS) leaching process in the presence of other refractory silver phases, Proceedings of the International Symposium on Computational Analysis in Hydrometallurgy, Dixon, D.G. and Dry, M.J., Eds., Montreal: Canadian Institute of Mining, Metallurgy and Petroleum, 2005, pp. 417–427.

  92. Majzlan, J., Ore mineralization at the Rabenstein occurrence near Banska Hodrusa, Slovakia, Mineralia Slovaca, 2009, vol. 41, pp. 45–54.

    Google Scholar 

  93. Marsden, J.O. and House, I.C., The Chemistry of Gold Extraction, Society for Mining, Metallurgy, and Exploration, Inc.(SME), Englewood, 2006.

    Google Scholar 

  94. Maslennikov, V.V., Ayupova, N.R., Safina, N.P., Tseluyko, A.S., Melekestseva, I.Y., Large, R.R., and Tessalina, S.G., Mineralogical features of ore diagenites in the Urals massive sulfide deposits, Russia, Minerals, 2019, vol. 9, no. 3, p. 150.

    Article  Google Scholar 

  95. Meléndez, A.M., Arroyo, R., and González, I., On the reactivity of sulfosalts in cyanide aqueous media: structural, bonding and electronic aspects, Chem. Phys. Chem., 2010, vol. 11, p. 2879.

    Article  Google Scholar 

  96. Mikhailov, B.K., Ivanov, A.I., Vartanyan, S.S., and Benevol’skii, B.I., Problems of Mineral-Raw Gold Base of Russia, Rudy Met., 2015, no. 1, pp. 93–99.

  97. Mironov, A.G. and Geletii V.F., Experimental study of gold distribution in sulfdes, Dokl. Akad, Nauk SSSR, 1979, vol. 247, no. 1, pp. 218–221.

    Google Scholar 

  98. Moiseenko, V.G., Ot atomov zolota cherez klastery, nano- i mikroskopicheskie chastitsy do samorodkov blagorodnogo metalla (From Gold Atoms through Clusters, Nano-, and Microscopic Particles to Nuggets of Noble Metals), Blagoveshchensk: In-t geologii i prirodopol’zovaniya RAN, 2007.

  99. Molchanov, V.P., Moiseenko, V.G., Khomich, V.G., and Goryachev, I.A., Palladium–gold–rare metal mineralization in the Oemku Ore Group, Sikhote Alin Range, Dokl. Earth Sci., 2000, vol. 375A, no. 9, pp. 1420–1422.

    Google Scholar 

  100. Molchanov V.P., Moiseenko V.G., Zimin S.S., and Ignat’ev A.V. Genesis of the Kumbai gold ore deposit, Korean People’s Democratic Republic, Dokl. Earth Sci., 1999, vol. 365, no. 2, pp. 204–205.

    Google Scholar 

  101. Morrison, G.W., Rose, W.J., and Jareith, S., Geological and geochemical controls on the silver content (fineness) of gold in gold–silver deposits, Ore Geol. Rev., 1991, vol. 6, pp. 333–364.

    Article  Google Scholar 

  102. Murzin, V.V. and Sazonov, V.N., Origin of cupriferous gold mineralization in Alpine-type ultramafic rocks, Dokl. Earth Sci., 1999, vol. 367, no. 5, pp. 634–635.

    Google Scholar 

  103. Murzin, V.V. and Sustavov, S.G., Soild-phase transformations in natural cupriferous gold, Izv. AN SSSR. Ser. Geol., 1989, no. 11, pp. 94–104.

  104. Murzin, V.V., Naumov, E.A., Azovskova, O.B., Varlamov, D.A., Rovnushkin, M.Yu., and Pirajno, F., The Vorontsovskoe Au–Hg–As ore deposit (northern Urals, Russia): geological setting, ore mineralogy, geochemistry, geochronology and genetic model, Ore Geol. Rev., 2017, vol. 85, pp. 271–298.

    Article  Google Scholar 

  105. Murzin, V.V., Chudnenko, K.V., Palyanova, G.A., Varlamov, D.A., Naumov, E.A., and Pirajno, F., Physicochemical model for the genesis of Cu–Ag–Au–Hg solid solutions and intermetallics in the rodingites of the Zolotaya Gora gold deposit (Urals, Russia), Ore Geol. Rev., 2018, vol. 93, pp. 81–97.

    Article  Google Scholar 

  106. Naumov, E.A., Types of Gold–Mercury Mineralization of the Altai–Sayan Fold Area and Physicochemical Conditions of their Formation, Extended Abstract of Candidate’s (Geol.-Min) Dissertation, Novosibirsk, 2007.

  107. Naumov, E.A., Borovikov, A.A., Borisenko, A.S., Zadorozhnyi, M.V., and Murzin, V.V., Physicochemical conditions of formation of epithermal gold–mercury deposits, Geol. Geofiz., 2002, vol. 43, no. 12, pp. 1055–1064.

    Google Scholar 

  108. Necterenko, G.V., Kuznetsova, A.P., Pal’chik, N.A., and Lavrent’ev, Yu.G., Petrovskaite AuAg(S,Se) – a new selenium-bearing gold and silver sulfide, Zap. VMO, 1984, no. 5, pp. 602–607.

  109. Nekrasov, I.Ya., Geokhimiya, mineralogiya i genezis zolotorudnykh mestorozhdenii (Geochemistry, Mineralogy, and Genesis of Gold Deposits), Moscow: Nauka, 1991.

  110. Nikolaev, Yu.N., Prokof’ev, V.Yu., Apletalin, A.V., Vlasov, E.A., Baksheev, I.A., Kal’ko, I.A., and Komarova, Ya.S., Gold–telluride mineralization of the western Chukchi peninsula, Russia: mineralogy, geochemistry, and formation conditions, Geol. Ore Deposits, 2013, vol. 55, no. 2, pp. 96–124.

    Article  Google Scholar 

  111. Nikolaeva, L.A., Gavrilov, A.M., Nekrasova, A.N., Yablokova, S. V., and Shatilova, L.V., Atlas samorodnogo zolota rudnykh i rossypnykh mestorozhdenii Rossii (Atlas of Native Gold of Ore and Placer Deposits of Russia). Moscow: TSNIGRI, 2003.

  112. Nikolaeva L.A., Nekrasova A.N., Milyaev S.A., Yablokova S.V., Gavrilov A.M. Geochemistry of native gold from deposits of various types, Geol. Ore Deposits, 2013, vol. 55, no. 3, pp. 176–184.

    Article  Google Scholar 

  113. Nikulova, N.Yu. and Filippov, V.N., Native palladium in gold from conglomerates of the Tel’pos (O1tp) Formation (Maldynyrd Range, near-Polar Urals), Zap. Ross. Mineral.O-va, 2009, vol. 138, no. 1, pp. 69–72.

    Google Scholar 

  114. Novgorodova, M.I., Samorodnye metally v gidrotermal’nykh rudakh (Native Metals in Hydrothermal Ores), Moscow: Nauka, 1983.

  115. Okamoto, H. and Massalski, T.B., The Au–Pd (gold–palladium) system, Bull. Alloy Phase Diagr., 1985, vol. 6, no. 3, pp. 229–235.

    Article  Google Scholar 

  116. Okrugin, A.V., Mazur, A.B., Zemnukhov, A.L., Popkov, P.A., and Sleptsov, S.V., Association of the palladium gold with PGE minerals in placers of the Anabar River in northeastern Siberian Platform, Otechestvennaya Geol., 2009, no. 5, pp. 3–10.

  117. Olivo, R., Gauthier, M., and Bardoux, M., Palladian gold from the Caue iron mine, Itabira District, Minas Gerais, Brazil, Mineral. Mag., 1994, vol. 58, pp. 579–587.

    Article  Google Scholar 

  118. Olivo, G.R., Gauthier, M., Bardoux, M., Leao de Sa, E., Fonseca, J.T.F., and Santana, F.C., Palladium-bearing gold deposit hosted by Proterozoic Lake Superior-type iron-formation at the Caue iron mine, Itabira District, southern Sao Francisco Craton, Brazil: geologic and structural controls, Econ. Geol., 1995, vol. 90, pp. 118–34.

    Article  Google Scholar 

  119. Olivo, R. and Gauthier, M., Palladium minerals from the Caue iron mine, Itabira District, Minas Gerais, Brazil, Mineral. Mag., 1995, vol. 59, pp. 455–463.

    Article  Google Scholar 

  120. Ostashchenko, B.A., Shumilov, I.X., and Maiorova, T.P., Microgold: problems of mineralogy and technology of enrichment, Nanomineralogiya. Ul’tra- i mikrodispersnoe sostoyanie mineral’nogo veshchestva (Nanomineralogy. Ultra- and Micro-Dispersal State of Mineral Matter), St. Petersburg.: Nauka, 2005, pp. 247–252.

    Google Scholar 

  121. Ozhogin, D.O., Nanomineralogical Features of Gold–Sulfide Ores of the Malomyr Deposit. Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, Moscow, 2009.

  122. Paar, W.H., Roberts, A.C., Criddle, A.J., and Topa, D., A new mineral, chrisstanleyite, Ag2Pd3Se4, from Hope’s Nose, Torquay, Devon, England, Mineral. Mag., 1998, vol. 62, pp. 257–264.

    Article  Google Scholar 

  123. Palyanova, G.A., Mikhlin, Yu.L., Karmanov, N.S., Kokh, K.A., and Seryotkin, Yu.V., Visible and “invisible” forms of gold and silver in the crystallization products of melts in the Fe–S–Ag–Au system: experimental data, Dokl. Earth Sci., 2017, vol. 474, no. 2, pp. 636–640.

    Article  Google Scholar 

  124. Pal’yanova, G.A., Murzin, V.V., Zhuravkova, T.V., and Varlamov, D.A., Au–Cu–Ag-mineralization in rodingites and nephritoids of the Agardag ultramafic massif (southern Tuva, Russia), Russ. Geol. Geophys., 2018, vol. 59, no. 3, pp. 283–256.

    Google Scholar 

  125. Palyanova, G.A. and Savva, N.E., Some gold and silver sulfides: composition, mienral assemblages, and conditions of formation, Khim. Tekhnol., 2007, vol. 8, no. 9, pp. 411–421.

    Google Scholar 

  126. Palyanova, G.A. and Savva, N.E., Specific genesis of gold and silver sulfides at the Yunoe deposit (Magadan Region, Russia), Russ. Geol. Geophys., 2009, vol. 50, no. 7, pp. 579–594.

    Article  Google Scholar 

  127. Palyanova, G.A., Savva, N.E., Zhuravkova, T.V., and Kolova, E.E., Gold and silver minerals in low-sulfide ores of the Dzhulietta deposit (northeastern Russia), Russ. Geol. Geophys., 2016, vol. 57, no. 8, pp. 1171–1190.

    Article  Google Scholar 

  128. Palyanova, G.A., Sazonov, A.M., Zhuravkova, T.V., and Silyanov, S.A., Composition of pyrrhotite as an indicator of gold ore formation conditions at the Sovertskoe deposit (Yenisei Ridge, Russia), Russ. Geol. Geophys., 2019a, vol. 60, no. 7, pp. 735–751.

    Google Scholar 

  129. Palyanova, G.A., Tolstykh, N.D., Zinina, V.Yu., Kokh, K.A., Seretkin, Yu.V., and Bortnikov, N.S., Synthetic gold chalcogenides in the Au–Te–Se–S system and their natural analogs, Dokl. Earth Sci., 2019b, vol. 487, no. 2, pp. 929–934.

    Article  Google Scholar 

  130. Palyanova, G., Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: gold fineness, Au/Ag ratios and their possible implications, Chem. Geol., 2008, vol. 255, pp. 399–413.

    Article  Google Scholar 

  131. Palyanova, G., Mikhlin, Y., Kokh, K., Karmanov, N., and Seryotkin, Y., Experimental constraints on gold and silver solubility in iron sulfides, J. Alloys Comp., 2015, vol. 649, pp. 67–75.

    Article  Google Scholar 

  132. Palyanova, G., Karmanov, N., and Savva, N., Sulfidation of native gold, Am. Mineral., 2014, vol. 99, pp. 1095–1103.

    Article  Google Scholar 

  133. Palyanova, G., Kokh, K., and Seryotkin, Yu., Transformation of pyrite to pyrrhotite in the presence of Au–Ag alloys at 500°C, Am. Mineral., 2016, vol. 101, no. 12, pp. 2731–2737.

    Article  Google Scholar 

  134. Palyanova, G., Kokh, K., and Seryotkin, Y., Sulphidation of Au–Ag alloys in the presence of pyrite (experimental data), Corros. Sci., 2017, vol. 121, pp. 126–132.

    Article  Google Scholar 

  135. Paterson, C.J., Ore deposits of gold and silver, mineral processing and extractive metallurgy, Review:An International Journal, 1990, vol. 6, nos. 1–4, pp. 43–66.

    Google Scholar 

  136. Petrovskaya, N.V., Samorodnoe zoloto (Native Gold), Moscow: Nauka, 1973.

  137. Petrovskaya, N.V., Zolotye samorodki (Gold Nuggets), Moscow: Nauka, 1993.

  138. Plaksin, I.N., Metallurgiya blagorodnykh metallov (Metallurgy of Noble Metals), Moscow: Metallurgizdat, 1958.

  139. Plotinskaya, O.Yu., Groznova, E.O., Kovalenker, V.A., Novoselov, K.A., and Seltmann, R., Mineralogy and formation conditions of ores in the Bereznyakovskoe Ore Field, the Southern Urals, Russia, Geol. Ore Deposits, 2009, vol. 51, no. 5, pp. 371–397.

    Article  Google Scholar 

  140. Proskurnin, V.F., Palyanova, G.A., Gavrish, A.V., Petrushkov, B.S., Bagaeva, A.A, and Bortnikov, N.S. The Geology, Mineral Associations, and Composition of Native Gold in the Mineral Deposits of the Taimyr–Severnaya Zemlya Orogen, Dokl. Earth Sci., 2019, vol. 484, no. 1, pp. 12–18.

    Article  Google Scholar 

  141. Proskurnin, V.F., Pal’yanova, G.A., Karmanov, N.S., Bagaeva, A.A., Gavrish, A.V., and Petrushkov, B.S., The first discovery of uytenbogaardtite in Taimyr (Konechnoe Occurrence), Dokl. Earth Sci., 2011, vol. 441, no. 4, pp. 1661–1665.

    Article  Google Scholar 

  142. Razin, L.V. and Sidorenko, G.A., Anyuiite AuPb2 – a new gold–lead intermetallide, Mineral. Zh., 1989, vol. 11, no. 4, pp. 88–92.

    Google Scholar 

  143. Rohner, P. and Millard, M., Treatment of antimonial gold ores, Gold Ore Processing, Adams, M.D., Ed., pp. 927–933.

  144. Rundquist, D.V., Time factor in the formation of hydrothermal deposits: periods, epochs, megastages, and stages of ore formation, Geol. Ore Deposits, 1997, vol. 39, no. 1, pp. 8–19.

    Google Scholar 

  145. Saunders, J.A., Burke, M., and Brueseke, M.E., Scanning-electron-microscope imaging of gold (electrum) nanoparticles in Middle Miocene bonanza epithermal ores from northern Nevada, USA, Miner. Deposita, 2020, vol. 55, pp. 389–398.

    Article  Google Scholar 

  146. Savva, N.E., Mineralogiya serebra severo-vostoka Rossii (Silver Mineralogy of Northeast Russia), Moscow: Triumf, 2018.

  147. Savva, N.E., Printsip evolyutsionnoi sistematiki mineralov serebra (teoreticheskie i empiricheskie aspekty) (Principle of Evolutionary Systematics of Silver Minerals: Theoretical and Empirical Aspects), Magadan: SVKNII, 1995.

  148. Savva, N.E. and Palyanova, G.A., Genesis of gold and silver sulfides at the Ulakhan deposit (northeastern Russia), Russ. Geol. Geophys., 2007, vol. 48, no. 10, pp. 799–809.

    Article  Google Scholar 

  149. Savva, N.E., Palyanova, G.A., and Byankin, M.A., The problem of genesis of gold and silver sulfides and selenides in the Kupol Deposit (Chukchi Peninsula, Russia), Russ. Geol. Geophys., 2012, vol. 53, no. 5, pp. 4567–466.

    Article  Google Scholar 

  150. Savva, N.E., Palyanova, G.A., and Kolova, E.E., Gold and silver minerals in a zone of secondary sulfide enrichment (Krutoe occurrence, northeastern Russia), Vestn. SVNTs DVO RAN, 2010, no. 1, pp. 33-45.

  151. Savva, N.E. and Preis, V.K., Atlas samorodnogo zolota SV SSSR (Atlas of Native Gold of Northeastern USSR), Moscow: Nauka, 1990.

  152. Savva, N.E. Palyanova, G.A., and Kolova, E.E., Gold and silver minerals and conditions of their formation at the Dorozhnoye deposit (Magadan region, Russia), Nat. Resources, 2014, no. 5, pp. 478–495.

  153. Sendek, S.V. and Sovmen, Kh.M., State and prospects of gold mining in Russia, Zap. Gorn. Inst., 1999, vol. 144, no. 1, pp. 71–88.

    Google Scholar 

  154. Sher, L.S., Zoloto. Zolotye samorodki Rossii (Gold. Gold Nuggets of Russia), Moscow: Zemlya, 1999.

  155. Shevko, E.P., Bortnikova, S.B., Abrosimova, N.A., Kamenetsky, V.S., Bortnikova, S.P., Panin, G.L., and Zelenski, M., Trace elements and minerals in fumarolic sulfur: the case of Ebeko Volcano, Kuriles, Geofluids, vol. 5, pp. 1–16.

  156. Shikazono, N. and Shimizu, M., The Ag/Au ratio of native gold and electrum and the geochemical environment of gold deposits in Japan, Mineral. Deposita, 1987, vol. 22, pp. 309–314.

    Article  Google Scholar 

  157. Shumilova, L.V., Classification of gold-bearing ores with dispersed gold based on technological refractoriness, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie (Modern Technology. System Analysis. Modeling), 2018, pp. 62–69.

    Google Scholar 

  158. Spiridonov E.M. Bilibinskites (Au5–6Cu3–2)8(Te,Pb,Sb)5 from a zone of cementation of the Aginskoe (Kamchatka) and Pionerskoe (Sayan) gold–telluride deposits, Nov. Dannye Mineralakh, 2011, no. 46, pp. 162–164.

  159. Spiridonov, E.M., A review of gold mineralogy in the main types of Au-mineralization, Zoloto Kol’skogo poluostrova i sopredel’nykh regionov (Gold of the Kola Peninsula and Adjacent Regions), Apatity: Izd-vo K & M, 2010a.

  160. Spiridonov, E.M., Ore-magmatic systems of the Noril’sk ore field, Russ. Geol. Geophys., 2010b, vol. 51, no. 9, pp. 1059–1077.

    Article  Google Scholar 

  161. Spiridonov E.M. and Pletnev, P.A., Mestorozhdenie medistogo zolota Zolotaya Gora (o “zoloto-rodingitovoi” formatsii) (Zolotaya Gora Cupriferous Gold Deposit (“Gold–Rodingite” Formation)), Moscow: Nauchnyi mir, 2002.

  162. Spry, P. and Thieben, S., The distribution and recovery of gold in the golden sunlight gold-silver telluride deposit, Montana, USA, Mineral. Mag., 2000, vol. 64, pp. 31–42.

    Article  Google Scholar 

  163. Spry, P., Chryssoulis, S.L., and Ryan, C.G., Mineralogical and metallurgical aspects of the recovery of gold in gold telluride-bearing ores, JOM, 2004, pp. 60–62.

  164. Steadman, J.A. and Large, R.R., Synsedimentary, diagenetic, and metamorphic pyrite, pyrrhotite, and marcasite at the Homestake BIF-hosted gold deposit, South Dakota, USA: insights on Au-As ore genesis from textural and LA-ICP-MS trace element studies, Econ. Geol., 2016, vol. 111, pp. 1731–1752.

    Article  Google Scholar 

  165. Stepanov, V.A. and Moiseenko, V.G., Gold–mercury deposits in East Russia, Dokl. Earth Sci., 2008, vol. 421, no. 2, pp. 779–781.

    Article  Google Scholar 

  166. Strizhko, L.S., Metallurgiya zolota i serebra (Gold and Silver Metallugy), Moscow: MISIS, 2001.

  167. Tagirov, B.R., Dikov, Yu.P., Bulev, M.I., Koval’chuk, E.V., Chareev, D.A., Kokh, M.A., Borisovsky, S.E., Abramova, V.D., Baranova, N.N., Garas’ko, M.I., Kovalenker, V.A., and Bortnikov, N.S. “Invisible” gold in covellite (CuS): synthesis and studies by EPMA, LA–ICP–MS, and XPS techniques, Dokl. Earth Sci., 2014, vol. 459, no. 1, pp. 1381–1386.

    Article  Google Scholar 

  168. Tagirov, B.R., Trigub, A.L., Kvashnina, K.O., Shiryaev, A.A., Chareev, D.A., Nickolsky, M.S., Abramova, V.D., and Kovalchuk, E.V., Covellite CuS as a matrix for “invisible” gold: X-ray spectroscopic study of the chemical state of Cu and Au in synthetic minerals, Geochim. Cosmochim. Acta, 2016, vol. 191, pp. 58–69.

    Article  Google Scholar 

  169. Tauson, V.L., Bessarabova, O.I, Kravtsova, R.G., Pastushkova, T.M., and Smagunov, P.V., Separation of forms of gold occurrence in pyrites by studying statistic samples of analytical data, Russ. Geol. Geophys., 2002, vol. 43, no. 1, pp. 57–67.

    Google Scholar 

  170. Tauson, V.L. and Kravtsova, R.G., Assessment of structural constituent of gold admixture in pyrites of the epithermal gold–silver deposits, northeastern Russia, Zap. Ross. Mineral.O-va, 2002, vol. 131, no. 4, pp. 1–11.

    Google Scholar 

  171. Tauson, V.L., Salikhov, A., Matschullat, I., Smagunov, N.V., Bessarabova, O.I., Men’shikov, V.I., and Parkhomenko, I.Yu., On the possibility of analytical determination of structurally bound gold in sulfide minerals, Geochem. Int., 2001, vol. 39, no. 9, pp. 864–872.

    Google Scholar 

  172. Tauson, V.L., Lipko, S.V., Smagunov, N.V., and Kravtsova, R.G., Trace element partitioning dualism under mineral–fluid interaction: origin and geochemical significance, Minerals, 2018, vol. 8, no. 7, p. 282.

    Article  Google Scholar 

  173. Taylor, L.A., The system Ag-Fe-S: phase equilibria and mineral assemblages, Miner. Deposita, 1970, vol. 5, pp. 41–58.

    Article  Google Scholar 

  174. Teslenko, V., A review of conference “Gold and Technology 2018”, Zoloto Tekhnol., 2018, no. 2, pp. 28–37.

  175. Tolstykh, N., Vymazalova, A., Tuhy, M., and Shapovalova, M., Conditions of formation of Au–Se–Te mineralization in the Gaching ore occurrence (Maletoyvayam ore field), Kamchatka, Russia, Mineral. Mag., 2018, no. 82, pp. 649–674.

  176. Tolstykh, N.D., Palyanova, G.A., Bobrova, O.V., and Sidorov, E.G., Mustard gold of the Gaching ore deposit (Maletoyvayam ore field, Kamchatka, Russia), Minerals, 2019, no. 9, p. 489.

  177. Varajao, C.A.C., Colin, F., Vieillard, P., Melfi, A.J., and Nahon, D., Early weathering of palladium gold under lateritic conditions, Maquine Mine, Minas Gerais, Brazil, Appl. Geochem., 2000, vol. 15, pp. 245–263.

    Article  Google Scholar 

  178. Vasil’ev, V.I., Some results of study of mercurous gold, Geol. Geofiz., 1991, no. 2, pp. 66–73.

  179. Vaughan, J.P., The process mineralogy of gold: the classification of ore types, JOM, 2004, no. 5, pp. 46–48.

  180. Vikentyev, I.V., Invisible and microscopic gold in pyrite: methods and new data for massive sulfide ores of the Urals, Geol. Ore Deposits, 2015, vol. 57, no. 4, pp. 237–265.

    Article  Google Scholar 

  181. Vikentyev, I.V., Tyukova, E.E., Vikent’eva, O.V., Chugaev, A.V., Dubinina, E.O., Prokofiev, V.Yu., and Murzin, V.V., Vorontsovka Carlin-style gold deposit in the north Urals: mineralogy, fluid inclusion and isotope data for genetic model, Chem. Geol., 2019, vol. 508, pp. 144–166.

    Article  Google Scholar 

  182. Volkov, A.V. and Sidorov, A.A., Invisible gold, Vestn. Ross. Akad. Nauk, 2017, vol. 87, no. 1, pp. 40–49.

    Google Scholar 

  183. Voudouris, P., Tarkian, M., and Arikas, K., Mineralogy of telluride-bearing epithermal ores in the kassiteres-Sappes area, Western Thrace, Greece, Mineral. Petrol., 2006, vol. 87, pp. 31–52.

    Article  Google Scholar 

  184. Wang, L. Wang, H., Ma B.Z., Wang, S.Y., Xing, P., and Ma, R.X., Research on gold extraction from uytenbogaardtite via in situ microzone analysis, Hydrometallurgy, 2019, vol. 186, pp. 170–175.

    Article  Google Scholar 

  185. Wu, S., Yang, Y., and Song, Q., A new gold mineral - hunchunite (Au2Pb), Acta Mineral. Sinica, 1992, no. 12, pp. 319–322.

  186. www.elsevier.com/books/the-ore-minerals-under-the-microscope/pracejus/978-0-444-52863-6

  187. www.gold.1prime.ru/aurum79/nature/tbl_au.html

  188. www.mindat.org/element/Gold

  189. www.mindat.org/element/Silver

  190. www.rruff.info/ima

  191. www.webmineral.com/chem/Chem-Ag.shtml

  192. www.webmineral.com/chem/Chem-Au.shtml

  193. Yakhontova, L.K. and Grudev, A.P., Zona gipergeneza rudnykh mestorozhdenii (Zone of Supergene Ore Deposits), Mocow: MGU, 1978.

  194. Yushkin, N.P., Nanomineralogiya. Ul’tra- i mikrodispersnoe sostoyanie mineral’nogo veshchestva (Nanomineralogy. Ultra- and Microdispersed State of Mineral Matter and Problems of Nanomineralogy), St. Petersburg: Nauka, 2005, pp. 10–60.

  195. Yushko-Zakharova, O.E., Ivanov, V.V., Soboleva, L.N., Dubakina, L.S., Shcherbachev, D.K., Kulichikhina, R.D., and Timofeeva, O.S., Mineraly blagorodnykh metallov (spravochnik) (Minerals of Noble Metals (A Reference Book)), Moscow: Nedra, 1986.

  196. Zachariáš, J. and Němec, M., Gold to aurostibite transformation and formation of Au–Ag–Sb phases: the Krásná Hora deposit, Czech Republic, Mineral. Mag., 2017, vol. 81, no. 4, pp. 987–999.

    Article  Google Scholar 

  197. Zakharov B.A. and Meretukov M.A. Zoloto: upornye rudy (Gold: Refractory Ores), Moscow: “Ruda i Metally”, 2013.

  198. Zang, W., Fyfe, W.S., and Barnett, R.L., A silver–palladium alloy from the Bahia lateritic gold deposit, Carajas, Brazil, Miner. Mag., 1992, vol. 56, pp. 47–51.

    Article  Google Scholar 

  199. Zelenov, V.I., Metodika issledovaniya zoloto- i serebrosoderzhashchikh rud (Method of Study of Gold- and Silver-Bearing Ores), Moscow: Nedra, 1989.

  200. Zhou, J. and Gu, Y., Geometallurgical characterization and automated mineralogy of gold ores, Gold Ore Processing, Adams, M.D., Ed., (2016), pp. 95–111.

  201. Zhou, J., Jago, B., and Martin, C., Establishing the process mineralogy of gold ores, SGS Minerals Technical Bull, 2004, vol. 3, pp. 1–16.

    Google Scholar 

  202. Zhuravkova, T.V., Palyanova, G.A., Kalinin Yu.A., Goryachev, N.A., and Zinina, V.Yu., Physicochemical conditions of formation of gold and silver parageneses at the Valunistoe deposit (Chikchi Peninsula), Russ. Geol. Geophys., 2019, vol. 60, no. 11, pp. 1247–1256.

    Google Scholar 

  203. Zhuravkova, T.V., Pal’yanova, G.A., and Kravtsova R.G. Physicochemical formation conditions of silver sulfoselenides at the Rogovik deposit, Northeastern Russia, Geol. Ore Deposits, 2015, vol. 57, no. 4, pp. 313–330.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author expresses his gratitude to Academician N.S. Bortnikov for useful comments in preparation of this article. The author also thanks T.V. Zhuravkova and V.Yu. Zinina.

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-15-50036 and partially by nos. 20-05-00393, 19‒05‒00316a) and within the framework of the state task of the Institute of Geology and Mineralogy SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Palyanova.

Ethics declarations

The author declare that she has no conflict of interest.

Additional information

It is difficult to name any other metal that would play a greater role in the history of mankind than gold. Man, in a bitter struggle, claimed a part of natural wealth. But this part of gold is negligible in comparison with the amount of disperse metal in nature. Fersman, 1954

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palyanova, G.A. Gold and Silver Minerals in Sulfide Ore. Geol. Ore Deposits 62, 383–406 (2020). https://doi.org/10.1134/S1075701520050050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520050050

Keywords:

Navigation