Skip to main content
Log in

Dalnegorskite Ca5Mn(Si3O9)2, a New Pyroxenoid of the Bustamite Structure, a Rock-Forming Mineral of Calcic Skarns in the Dalnegorsk Borosilicate Deposit, Primorsky Krai, Russia

  • NEW MINERALS
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Dalnegorskite, a new pyroxenoid with the crystal chemical formula Ca2Ca2MnCa(Si3O9)2 and simplified formula Ca5Mn(Si3O9)2, is a rock-forming mineral in the B-bearing calcic skarns in the Dalnegorsk borosilicate deposit (Dalnegorsk, Primorsky Krai, Russia). It belongs to the bustamite structural type and forms a continuous solid-solution series with isostructural ferrobustamite Ca2Ca2FeCa[Si3O9]2. These pyroxenoids form beige, pinkish white and milky white radiated aggregates typically consisting of split thin acicular to fiber-like individuals and are associated with hedenbergite, datolite, andradite, galena, sphalerite, and pyrrhotite. Dmeas. = 3.02(2), Dcalc. = 3.035 g cm–3. Dalnegorskite is biaxial negative, α = 1.640 (3), β = 1.647 (3), γ = 1.650 (3)°, 2Vmeas. = 75(10)°. The average chemical composition of the holotype (electron microprobe data) is: 0.23 MgO, 40.02 CaO, 5.02 MnO, 3.64 FeO, 50.65 SiO2, total 99.56 wt %. The empirical formula calculated for 18 O atoms is Ca5.03Mn0.51Fe0.36Mg0.04Si6.01O18. The crystal structure of the new mineral was obtained from X-ray diffraction data using the Rietveld method, Rp= 0.0345, Rwp = 0.0444, R1 = 0.0790, and wR2 = 0.0802. Dalnegorskite is triclinic, P-1, a = 7.2588(11), b = 7.8574(15), c = 7.8765(6) Å, α = 88.550(15), β = 62.582(15), γ = 76.621(6)°, V = 386.23(11) Å3, and Z = 1. Dalnegorskite is distinct from the related mineral wollastonite in the infrared spectrum. The wave numbers of the maxima of strong bands in the Si–O stretching vibration region in the IR spectrum of dalnegorskite are (cm–1): 905, 937, 1025, and 1070. The holotypic specimen of dalnegorskite is kept in the collection of the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia (no. 96201).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Aksenov, S.M., Shchipalkina, N.V., Rastsvetaeva, R.K., Pekov, I.V., Chukanov, N.V., and Yapaskurt, V.O., Iron-rich bustamite from broken Hill, Australia: The crystal structure and cation-ordering features, Cryst. Rep., vol. 60, no. 3, pp. 340–345.

    Article  Google Scholar 

  2. Belov, N.V. and Mamedov, K.S., Crystal structures of wollastonite-group minerals. The crystal structure of xonotlite, Zap. Vsesoyz. Mineral.O-va, 1956, vol. 85, no. 1, pp. 13–38.

    Google Scholar 

  3. Burnham, C.W., Ferrobustamite: the crystal structures of two Ca, Fe bustamite-type pyroxenoids: correction, Z. Krist., 1975, vol. 142, pp. 450–452.

    Google Scholar 

  4. Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Van, K.V., Belakovskiy, D.I., Pekov, I.V., Gurzhiy, V.V., Schuller, W., and Ternes, B., Mendigite, Mn2Mn2MnCa(Si3O9)2, a new mineral species from the Eifel volcanic region, Germany, Geol. Ore Deposits, 2015, vol. 57, nos. 8, pp. 721–731.

    Article  Google Scholar 

  5. Chukanov, N.V., Infrared Spectra of Mineral Species: Extended Library, Dordrecht: Springer-Verlag, 2014.

    Book  Google Scholar 

  6. Deer, W.A., Howie, R.A., and Zussman, J., Rock-Forming Minerals. Volume 2a. Single-Chain Silicates, London: Longman, 1978.

    Google Scholar 

  7. Fernandez-Diaz, L., Astilleros, J.M., and Pina, C.M., The morphology of calcite crystals grown in a porous medium doped with divalent cations, Chem. Geol., 2006, vol. 225, pp. 314–321.

    Article  Google Scholar 

  8. Harada, K., Sekino, H., Nagashima, K., Watanabe, T., and Momoi, H., High-iron bustamite and fluorapatite from the Broken Hill mine, New South Wales, Australia, Mineral. Mag., 1974, vol. 39, pp. 601–604.

    Article  Google Scholar 

  9. Kazachenko, V.T., Perevoznikova, E.V., and Narnov, G.A., Accessory mineralization in skarns of the Dalnegorsk ore district (Sikhote-Alin), Zap. Ross. Mineral. O-va, 2012, no. 4, pp. 73–96.

  10. Kurshakova, L.D., Fizikokhimicheskie usloviya obrazovaniya borosilikatnykh mestorozhdenii, (Physical-Chemical Conditions of Origin of Boron-Silicate Deposits), Moscow: Nauka, 1976.

  11. Melnitskaya, E.F., Manganese-iron wollastonite and its alteration, Zap. Vsesoyuz. Mineral.O-va, 1967, vol. 96, no. 3, pp. 297–305.

    Google Scholar 

  12. Mineraly. Spravochnik (Minerals. Reference Book), Chukhrov, F.V. and Smolianinova, N.N., (eds.) Moscow: Nauka, 1981.

    Google Scholar 

  13. Moroshkin, V.V. and Frishman, N.I., Dalnegorsk: notes on mineralogy, Miner. Alm, 2001, no. 4, p. 136.

  14. Ohashi, Y. and Finger, L.W., The role of octahedral cations in pyroxenoid crystal chemistry. I. Bustamite, wollastonite, and pectolite–schizolite–serandite series, Am. Mineral., 1978, vol. 63, pp. 274–288.

    Google Scholar 

  15. Peacor, D.R. and Buerger, M.J., Determination and refinement of the crystal structure of bustamite, CaMnSi2O6, Z. Krist., 1973, vol. 1386, pp. 419–438.

    Google Scholar 

  16. Petříček, V., Dusek, M., and Palatinus, L., Crystallographic Computing System JANA2006: general features, Z. Krist., 2014, vol. 229, no. 5, pp. 345–352.

    Google Scholar 

  17. Punin, Yu.O., Crystal splitting, Zap. Vsesoyuz. Mineral.O-va, 1981, vol. 110, no. 6, pp. 666–686.

    Google Scholar 

  18. Rapoport, P.A. and Burnham, C.W., Ferrobustamite: the crystal structures of two Ca,Fe bustamitetype pyroxenoids, Z. Krist, 1973, vol. 1386, pp. 419–438.

    Article  Google Scholar 

  19. Shannon, R.D. and Prewitt, C.T., Revised values of effective ionic radii, Acta Cryst., 1970, vol. 26, no. 7, pp. 1046–1048.

    Article  Google Scholar 

  20. Shchipalkina, N.V., Kononov, O.V., Pekov, I.V., Koshlyakova, N.N., and Britvin, S.N., Wollastonite and ferrobustamite of the Tyrnyauz ore field (North Caucasus): chemical composition, relations and mineralogical-technological aspect, New Data Miner., 2018, vol. 52, no. 2, pp. 43–50.

    Google Scholar 

  21. Shimazaki, H. and Yamanaka, T., Iron-wollastonite from skarns and its stability relation in the CaSiO3–CaFeSi2O6 join, Geochem. J., 1973, vol. 7, pp. 67–79.

    Article  Google Scholar 

  22. Yamanaka, T., Sadanaga, R., and Takeuchi, Y., Structural variation in the ferrobustamite solid solution, Am. Mineral., 1977, vol. 62, pp. 1216–1224.

    Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 18-05-00332). IR-spectroscopy was carried out under state assignment (state registration no. 0089-2016-0001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Shchipalkina or I. V. Pekov.

Additional information

Translated by E. Maslennikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchipalkina, N.V., Pekov, I.V., Ksenofontov, D.A. et al. Dalnegorskite Ca5Mn(Si3O9)2, a New Pyroxenoid of the Bustamite Structure, a Rock-Forming Mineral of Calcic Skarns in the Dalnegorsk Borosilicate Deposit, Primorsky Krai, Russia. Geol. Ore Deposits 61, 756–766 (2019). https://doi.org/10.1134/S1075701519080105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701519080105

Keywords:

Navigation