Thermometry of Nickel Bearing Chlorites from the Kolskii Massif (Northern Urals)


The chemical composition of chlorites from the rocks that are conventionally classified as the residual weathering mantle of the Kolskii ophiolite massif was studied. The chlorites exhibit high Mg/ (Mg + Fe) atomic ratio values (Mg#) of 0.78–0.96 and elevated Si content (2.95–3.74 apfu), but are relatively poor in Al (1.28–2.66 apfu). In terms of octahedral occupancy (RVI is 5.52–5.98 and [R3+]VI is 0.87–2.04 apfu), they are classified as the trioctahedral subgroup. The NiO content in the chlorites varies from 0.2 to 21 wt %; in addition, the tabular low-Ni and high-Ni chlorite grains are often tightly intergrown. There is a pronounced negative correlation between NiO and MgO content. The crystallization temperature estimated using chlorite geothermometers varies widely. The crystallization temperature interval is 125–300°C or higher with a statistical maximum in the region of 175–300°C for the low-Ni chlorites and 50–250°С with a statistical maximum in the region of 75–125°С for the high-Ni chlorites. In addition, the high-Ni chlorites demonstrate a gradual decrease in temperature as the nickel content increases. This correlation indicates the important role of temperature as an ore generation factor during the formation of the oxide–silicate nickel deposits that are associated with the Kolskii massif. These tendencies support the conclusion that the hydrothermal processes not only preceded lateritization, but also played a significant part in the level of nickel concentration in phyllosilicates.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1.

    Afcl stands for “aluminum-free chlorite” Mg6Si4O10(OH)8. The abbreviations of other endmembers of isomorphic series are given according to “Abbreviations for Names of Rock-Forming Minerals” (Whitney and Evans, 2010).


  1. 1

    Abramov, S.S., Plotinskaja, O.Yu., and Groznova, E.O., Crystal chemistry of chlorite in the Cu–Au–Mo Mikheevskoe deposits (Southern Urals): typomorphism, reflection of evolution of the deposit, Mater. Mezhdunar. Konf. Posvyazhen. 300-letiyu Mineral. Muzeya im. A.E. Fersmana RAN (Proc. Int. Conf. Dedicated to the 300th Anniversary of the Fersman Mineralogical Museum RAS, 2016), Moscow, 2016, pp. 3–4.

  2. 2

    Bailey, S. W., Chlorites: structures and crystal chemistry, Hydrous Phyllosilicates, Ed. Bailey, S.W., Eds., Rev. Mineral., 1988, vol. 19, pp. 347–403.

    Google Scholar 

  3. 3

    Borodina, K.G. and Vohmyatina, N.D., Structures and chemical composition of the weathering rind on serpentinite in the Elovskiy site of the Kolskiy ultramafin massif, Northern Urals, Kory vyvetrivaniya Urala (Weathering Crusts of the Urals), Saratov: Saratov University Press, 1969, pp. 254–258.

    Google Scholar 

  4. 4

    Bourdelle, F. and Cathelineau, M., Low-temperature chlorite geothermometry: a graphical representation based on a TR2+–Si diagram, Eur. J. Mineral., 2015, vol. 27, pp. 617–626.

    Article  Google Scholar 

  5. 5

    Bourdelle, F., Parra, T., Chopin, C., and Beyssac, O., A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 723–735.

    Article  Google Scholar 

  6. 6

    Bugelsky, Yu.Yu., Vitovskaya, I.V., Nikitina, A.P., Slukin, A.D., Novikov, A.M., et al., Ekzogennye rudoobrazuyushchie sistemy kor vyvetrivaniya (Exogenic Ore-Forming Systems of Weathering Crusts), Moscow: Nauka, 1990.

  7. 7

    Cathelineau, M., Cation site occupancy in chlorites and illites as a function of temperature, Clay Miner., 1988, vol. 23, pp. 471–485.

    Article  Google Scholar 

  8. 8

    Cathelineau, M., Myagkiy, A., Quesnel, B., Boiron, M.-C., Gautier, P., Boulvais, P., Ulrich, M., Laurent Truche, L., Golfier, F., and Drouillet, M., Multistage crack seal vein and hydrothermal Ni enrichment in serpentinized ultramafic rocks (Koniambo massif, New Caledonia), Miner. Deposita, 2017, vol. 52, p. 945.

    Article  Google Scholar 

  9. 9

    Chinchilla, D., Arroyo, X., Merinero, P., Pina, R., Nieto, F., Ortega, L., and Lunar, R., Chlorite geothermometry applied to massive and oscillatory-zoned radiated Mn-rich chlorites in the Patricia Zn–Pb–Ag epithermal deposit (NE, Chile), Appl. Clay Sci., 2016, vol. 134, pp. 210–220.

    Article  Google Scholar 

  10. 10

    Cluzel, D. and Vigier, B., Syntectonic mobility of supergene nickel ores of New Caledonia (Southwest Pacific). Evidence from garnierite veins and faulted regolith, Resour. Geol., 2008, vol. 58, pp. 161–170.

    Article  Google Scholar 

  11. 11

    De Caritat, P., Hutcheon, I., and Walshe, J.L., Chlorite geothermometry: a review, Clays Clay Mineral., 1993, vol. 41, pp. 219–239.

  12. 12

    Dora, M.L. and Randive, K.R., Chloritisation along the Thanewasna shear zone, Western Bastar Craton, Central India: its genetic linkage to Cu–Au mineralization, Ore Geol. Rev., 2015, vol. 70, pp. 151–172.

    Article  Google Scholar 

  13. 13

    Ducloux, J., Boukili, H., Decarreau, A., Petit, S., Perruchot, A., and Pradel, P., Un gite hydrothermal de garnierites: l’exemple de Bou Azzer, Maroc, Eur. J. Mineral., 1993, vol. 5, pp. 1205–1215.

    Article  Google Scholar 

  14. 14

    Evans, B.W., The serpentinite multisystem revisited: chrysotile is metastable, Int. Geol. Rev., 2004, vol. 46, pp. 479–506.

    Article  Google Scholar 

  15. 15

    Foster, M.D., Interpretation of the composition and a classification of the chlorites, Geol. Surv. Prof. Paper, 1962, 414-A.

  16. 16

    Hey, M.H., A new review of the chlorites, Mineral. Mag., 1954, vol. 30, pp. 277–292.

    Google Scholar 

  17. 17

    Hillier, S. and Velde, B., Octahedral occupancy and chemical composition of diagenetic (low-temperature) chlorites, Clay Minerals, 1991, vol. 26, pp. 149–168.

    Article  Google Scholar 

  18. 18

    Hinsken, T., Bröcker, M., Strauss, H., and Bulle, F., Geochemical, isotopic and geochronological characterization of listvenite from the Upper Unit on Tinos, Cyclades, Greece, Lithos, 2017, vol. 282–283, pp. 281–297.

    Article  Google Scholar 

  19. 19

    Inoue, A., Meunier, A., Patrier-Mas, P., Rigault, C., Beaufort, D., and Vieillard, P., Application of chemical geothermometry to low-temperature trioctahedral chlorites, Clays Clay Miner., 2009, vol. 57, pp. 371–382.

    Article  Google Scholar 

  20. 20

    Inoue, A., Kurokawa, K., and Hatta, T., Application of chlorite geothermometry to hydrothermal alteration in Toyoha geothermal system, Southwestern Hokkaido, Japan.Res. Geol, 2010, vol. 60, pp. 52–72.

    Article  Google Scholar 

  21. 21

    Kononova, L.I., Borodina, K.G., and Vohmyatina, N.D., The Serovskoe supergene nickel ore deposit, in Rudonosnye kory vyvetrivaniya, (Ore-Bearing Weathering Crusts), Moscow: Nauka, 1974, pp. 163–172.

    Google Scholar 

  22. 22

    Lacroix, B., Charpentier, D., Buatier, M., Vennemann, T., Labaume, P., Adatte, T., Trave, A., and Dubois, M., Formation of chlorite during thrust fault reactivation. Record of fluid origin and P–T conditions in the Monte Perdido thrust fault (southern Pyrenees), Contrib. Miner. Petrol. 2012, Vol. 163, pp. 1083–1102.

    Article  Google Scholar 

  23. 23

    Lafuente, B., Downs, R.T., Yang, H., Stone, N., The power of databases: the RRUFF project. Highlights in Mineralogical Crystallography, Armbruster T. and Danisi, R.M., Eds., Berlin: W. De Gruyter, 2015, pp. 1–30.

    Google Scholar 

  24. 24

    Lanari, P., Wagner, T., and Vidal, O., A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: applications to P–T sections and geothermometry, Contrib. Mineral. Petrol., 2014, vol. 167, p. 968.

    Article  Google Scholar 

  25. 25

    Lazarenkov, V.G., Talovina, I.V., Vorontsova, N.I., Mezentseva, O.P., and Ryzhkova, S.O., Nickel chlorites in the oxide-silicate nickel ore deposits of the Urals, Lithol. Miner. Resour., 2011, vol. 46, p. 312.

    Article  Google Scholar 

  26. 26

    Legros, H., Marignac, C., Tabary, T., Mercadier, J., Richard, A., Cuney, M., Wang, R.-C., Charles, N., and Lespinasse, M.-Y., The ore-forming magmatic-hydrothermal system of the Piaotang W–Sn deposit (Jiangxi, China) as seen from Li-mica geochemistry, Am. Mineral., 2018, vol. 103, pp. 39–54.

    Article  Google Scholar 

  27. 27

    Lewis, J.F., Draper, G., Proenza, J.A., Espaillat, J., and Jiménez, J., Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean Region: a review of their occurrence, composition, origin, emplacement and Ni-laterite soils formation, Geol. Acta, 2006, vol. 4, pp. 237–263.

    Google Scholar 

  28. 28

    Mamadou, M.M., Cathelineau, M., Bourdelle, F., Boiron, M.-C., Elmaleh, A., and Brouand, M., Hot fluid flows around a major fault identified by paleothermometric studies (Tim Mersoi Basin, Niger), J. Sediment. Res., 2016, vol. 86, pp. 914–928.

    Article  Google Scholar 

  29. 29

    Michailov, B.M. and Ivanov, L.A., Problems of the Fe–Co–Ni Buruktal deposit, South Urals, Appl. Metall. Miner. Prosp., 2003, no. 1, pp. 5–12.

  30. 30

    Nikelenosnye kory vyvetrivaniya (Ni-bearing Weathering Crusts of the Urals) Nikitin, K.K., Yanitzkiy, A.L., Vitovskaya, I.V., et al., Moscow: Nauka, 1970.

  31. 31

    Quesnel, B., Boulvais, P., Gautier, P., Cathelineau, M., John, C.M., Dierick, M., Agrinier, P., and Drouillet, M., Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia peridotite nappe, Geochim. Cosmochim. Acta, 2016, vol. 183, pp. 234–249.

    Article  Google Scholar 

  32. 32

    Rapoport, M.S. and Barannikov, A.G., Mezozoic endogenous mineralogy of the Urals (some features and problems), Izv. Ural. Gos. Gorno-Geol. Akad., no. 8, pp. 89–94.

  33. 33

    Razumova, V.N., Drevnie kory vyvetrivaniya i gidrotermal’nyi protsess (Ancient Weathering Crusts and the Hydrothermal Process, Moscow: Nauka, 1977.

  34. 34

    Sagdieva, R.K., Talovina, I.V., and Vorontsova, N.I., Modern views on the formation of nickel weathering crusts of the ultrabasic massifs in the Urals, Gorn. Inform. Analit. Byul., 2016, no. 6, pp. 278–288.

  35. 35

    Spiridonov, E.M., Low-grade metamorphism as an ore-preparing, ore-forming and ore-transforming process, Mater. V Ross. Konf. Po problemam geologii I geodinamiki dokembrita “Geodinamicheskie obstanovki i termodinamicheskie usloviya regional’nogo metamorfizma v dokembrii i fanerozoe (Proc. V Russian Conf. Problems Geol. Geodynamic Precambr. "Geodynamic Setting and Thermodynamic Conditions of Regional Metamorphism in Precambrian and Phanerozoic”, Saint Petersburg: Sprinter, 2017, pp. 166–168.

  36. 36

    Talovina, I.V., Lazarenkov, V.G., Kempe, U., Vorontsova, N.I., Mezentseva, O.P., Ryzhkova, S.O., and Ugolkov, V.L., Nickel serpentines of lizardite-nepuite series and caryopilite in supergene nickel ore deposits of the Urals, Zap. Ross. Mineral. O-va, 2010, no. 4, pp. 80–94.

  37. 37

    Talovina, I.V., Lazarenkov, V.G., Kempe, U., Tikhomirova, M., Mezentseva, O.P., and Pylugin, A.G., Millerite in ores of the Elovskoe nickel deposits and its genesis in the light of isotopic data, Zap. Ross. Mineral. O-va, 2013, no. 1, pp. 87–99.

  38. 38

    Trincal, V. and Lanari, P., Al-free di-trioctahedral substitution in chlorite and a ferri-sudoite end-member, Clay Miner., 2016, vol. 51, pp. 675–689.

    Article  Google Scholar 

  39. 39

    Vershinin, A.S., Nickel ore deposits in the Urals, Gorn. Zh., 1996, nos. 8–9, pp. 23–57.

  40. 40

    Vidal, O., Parra, T., and Trotet, F., A thermodynamic model for Fe–Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100° to 600°C, 1 to 25 kb range, Amer. J. Sci., 2001, vol. 301, pp. 557–592.

    Article  Google Scholar 

  41. 41

    Vidal, O., Parra, T., and Vieillard, P., Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: application to natural examples and possible role of oxidation, Am. Mineral., 2005, vol. 90, pp. 347–358.

    Article  Google Scholar 

  42. 42

    Vidal, O., de Andrade, V., Lewin, E., Muñoz, M., Parra, T., and Pascarelli, S., P–T–deformation–Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan), J. Metamorph. Geol., 2006, vol. 24, pp. 669–683.

    Article  Google Scholar 

  43. 43

    Vidal, O., Lanari, P., Muñoz, M., Bourdelle, F., and de Andrade, V., Deciphering temperature, pressure and oxygen–activity conditions of chlorite formation, Clay Minerals, 2016, vol. 51, pp. 615–633.

    Article  Google Scholar 

  44. 44

    Vorontsova, N.I., Talovina, I.V., Lazarenkov, V.G., Ryzhkova, S.O., and Mezentseva, O.P., Prospects of nickel industry in the Urals in the light of ore field structure study in supergene nickel ore deposits, Zap. Gorn. Inst., 2009, vol. 183, pp. 78–87.

    Google Scholar 

  45. 45

    Vtorushin, A.V., Zhuravleva, H.A., and Russkiy, V.I., Ni-bearing weathering crusts on ultramafites in the southern part of the Kolskiy massif, in Kory vyvetrivaniya Urala (Weathering Crusts of the Urals), Saratov: Saratov Univer., 1969, pp. 245–251.

    Google Scholar 

  46. 46

    Walshe, J.L., A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems, Econ. Geol., 1986, vol. 81, pp. 681–703.

    Article  Google Scholar 

  47. 47

    Wenner, D.B. and Taylor, H.P., Temperatures of serpentinization of ultramafic rocks based on 18O/16O fractionation between coexisting serpentine and magnetite, Contrib. Mineral. Petrol., 1971, vol. 32, pp. 166–185.

    Article  Google Scholar 

  48. 48

    Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  49. 49

    Wiewióra, A. and Weiss, Z., Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group, Clay Mineral., 1990, vol. 25, pp. 83–92.

    Article  Google Scholar 

  50. 50

    Yavuz, F., Kumral, M., Karakaya, N., Karakaya, M., and Yιldιrιma, D.A., Windows program for chlorite calculation and classification, Comp. Geosci., 2015, vol. 81, pp. 101–113.

    Article  Google Scholar 

  51. 51

    Zane, A. and Weiss, Z., A procedure for classifying rock-forming chlorites based on microprobe data, Rend. Fis. Acc. Lincei, 1998, vol. 9, pp. 51–56.

    Article  Google Scholar 

  52. 52

    Zane, A., Sassi, R., and Guidotti, C.V., New data on metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschist-facies rocks, Can. Mineral., 1998, vol. 36, pp. 713–726.

    Google Scholar 

Download references


The authors thank the senior geologist of OAO Ufaleinikel’ and the Serovskii mine V.I. Volodin for assistance in fieldwork and sampling organization. The authors are grateful to O.L. Galankina (IGGP RAS) and E.A. Vasil’ev (SPMU) for helpful assistance in analytical work.

Author information



Corresponding authors

Correspondence to R. K. Ilalova or Yu. L. Gulbin.

Additional information

Translated by E. Murashova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ilalova, R.K., Gulbin, Y.L. Thermometry of Nickel Bearing Chlorites from the Kolskii Massif (Northern Urals). Geol. Ore Deposits 61, 736–746 (2019).

Download citation


  • nickeliferous weathering mantle
  • chlorite thermometry
  • Kolskii massif
  • ophiolites
  • Northern Urals