Skip to main content
Log in

Isotope (δ34S, δ13C, δ18O) Compositions of Disseminated Sulfide Mineralization in Igneous Rocks of the Dukat Ore Deposit (Northeastern Russia)

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The paper discusses a study of variations in the δ34S, δ13C, δ18O compositions of disseminated sulfides and the carbonate phase, occurring in trace amounts in igneous rocks, which control the outlines of the unique Dukat Au-Ag deposit (northeastern Russia). The parameters obtained were compared with similar isotope parameters of ore assemblages of the same deposit. The δ34S values in sulfides and jarosite sampled in igneous rocks lie in a narrow interval (from −3.4 to + 3.6‰), which is comparable with the interval of δ34S variations in sulfides from orebodies (from −4.5 to + 2.0‰). Sulfur in pyrite of the early generation from K-Na leucogranites and pyrite from orebodies originated from the same source. Pyrite formed at late magmatic stages is characterized by a lighter sulfur isotope composition. Carbonate phases in igneous rocks of the Dukat ore deposit have low δ13C values (from −12.8 to −8.8‰). Based on oxygen isotope composition, carbonates are subdivided into two groups: those in equilibrium with the silicate matrix of rocks at high temperatures and those with abnormally low δ18O values (from −0.8 to +0.9‰). The data obtained can be described by a model that proposes that the formation of the sulfur isotope composition in sulfide and carbonate occurs in the process of thermochemical sulfate reduction (TSR) due to oxidation of organic carbon. Calculations show that the δ34S and δ13C values measured in rocks and ore assemblages of the Dukat ore deposit may have appeared due to abiogenic reduction of marine sulfate in a temperature range of 300–450°C. Comparison of the isotope parameters of carbonates from rocks and ore assemblages show that the source of carbonates in orebodies may have been country (underlying) rocks and the fluid released from cooling intrusive bodies of K-Na leucogranites, in which about 80% CO2 is lost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algeo, T.J., Luo, G.M., Song, H.Y., Lyons, T.W., and Canfeld, D.E., Reconstruction of secular variation in seawater sulfate concentrations, Biogeosciences, 2015, no. 12, pp. 2131–2151.

    Article  Google Scholar 

  • Aristov, V.V., Conditions of Localization of Gold–Silver Deposits of the Dukat Ore District: Okhotsk–Chukotsk Volcanogenic Belt, Extended Abstract of Candidate (Geol–Min.) Dissertation, Moscow, 1999.

    Google Scholar 

  • Bannikova, L.A., Organicheskoe veshchestvo v gidrotermal’nom rudoobrazovanii (Organic Matter in Hydrothermal Ore Formation), Moscow: Nauka, 1990.

    Google Scholar 

  • Bannikova, L.A., Barsukov, V.L., Galimov, E.M., and Kozerenko, S.V., Isotope compsoition of hydrothermal carbonates as indicator of ore precipitation conditions, Dokl. Aakad. Nauk SSSR, 1980, vol. 250, no. 1, pp. 193–196.

    Google Scholar 

  • Berman, Yu.S., Prokof’ev, V.Yu., Kozerenko, S.V., Eliseeva, N.A., and Kolpakova, N.N., Rejuvenation of gold–silver mineralization of the volcanogenic Dukat deposit: fluid inclusion data, Geokhimiya, 1993, no. 4, pp. 539–548.

    Google Scholar 

  • Blake, R.E., Surkov, A.V., Böttcher, M.E., Ferdelman, T.G., and Jørgensen, B.B., Oxygen isotope composition of dissolved sulfate in deep–sea sediments: eastern equatorial Pacific Ocean, Proc. ODP. Sci. Results., Jørgensen, B.B., D’Hondt, S.L. and Miller, D.J., Eds., 2006, vol. 201, pp. 1–23.

    Google Scholar 

  • Bottinga, Y., Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–carbon dioxide–graphite–methane–hydrogen–water vapor, Geochim. Cosmochim. Acta, 1969, no. 33, pp. 49–64.

    Article  Google Scholar 

  • Canfield, D.E. and Farquhar, J., Animal evolution, bioturbation and the sulfate concentration of the oceans, Proc. Natl. Acad. Sci. USA, 2009, no. 106, pp. 8123–8127.

    Article  Google Scholar 

  • Chacko, T., Mayeda, T.K., Clayton, R.N., and Goldsmith, J.R., Oxygen and carbon isotope fractionations between CO2 and calcite, Geochim. Cosmochim. Acta, 1991, no. 55, pp. 2867–2882.

    Article  Google Scholar 

  • Chacko, T. and Deines, P., Theoretical calculation of oxygen isotope fractionation factors in carbonate systems, Geochim. Cosmochim. Acta, 2008, no. 72, pp. 3642–3660.

    Article  Google Scholar 

  • Chernyshev, I.V., Filimonova, L.G., Chugaev, A.V., et al., Sources of ore matter of the Dukat gold–silver deposit (Northeastern Russia): data from Pb, Sr, and Nd isotope studies, Geol. Ore Deposits, 2005, vol.47, no. 4, pp. 269–282.

    Google Scholar 

  • Dubinina, E.O., Baskina, V.A., and Avdeenko, A.S., Nature of ore–forming fluids of the Dal’negorsk Deposit: isotopic and geochemical parameters of the altered host rocks, Geol. Ore Deposits, 2011, vol. 53, no. 1, pp. 58–73.

    Article  Google Scholar 

  • Dubinina E.O., Chugaev A.V., Ikonnikova T.A., Avdeenko A.S., and Yakushev A.I. Sources and fluid regime of quartz–carbonate veins at the Sukhoi Log Gold Deposit, Baikal–Patom Highland, Petrology, 2014, vol. 22, no. 4, pp. 329–358.

    Google Scholar 

  • Filimonova, L.G., Microxenoliths of crustal eclogites in felsic volcanic rocks of the northwestern Pacific belt, Petrologiya, 1994, vol. 2, no. 5, pp. 532–539.

    Google Scholar 

  • Filimonova, L.G. and Chugaev, A.V., Chronology of Hydrothermal and Magmatic Activity in the Dukat Gold–Silver Ore Field, Geol. Ore Deposits, 2006, vol. 48, no. 6, pp. 489–498.

    Article  Google Scholar 

  • Filimonova, L.G., Trubkin, N.V., and Chugaev, A.V., Dispersed mineralization in granitic rocks in the Dukat Ore Field, the Russian Northeast: sources and relationship with epithermal gold–silver and silver–base–metal ores, Geol. Ore Deposits, 2012, vol. 54, no. 2, pp. 99–121.

    Article  Google Scholar 

  • Filimonova, L.G., Trubkin, N.V., and Chugaev, A.V., Mineral types of hydrothermal alteration zones in the Dukat Ore Field and their relationships to leucogranite and epithermal gold–silver ore, Northeastern Russia, Geol. Ore Deposits, 2014, vol. 454, no. 3, pp. 169–199.

    Article  Google Scholar 

  • Gamyanin, G.N., Alpatov, V.V., Anikina, E.Yu., and Bortnikov, N.S., Prognoz deposit, Krupnye i superkrupnye mestorozhdeniya rudnykh poleznykh iskopaemykh. T. 3. Strategicheskie vidy rudnogo syr’ya Vostoka Rossii (Large and Superlarge Ore Deposits. Vol. 3, Strategic Types of Ore Raw Material of East Russia), Moscow: IGEM RAN, 2006, book 1, pp. 427–459.

    Google Scholar 

  • Geodinamika, magmatizm, metallogeniya Vostoka Rossii (Geodynamics, Magmatism, and Meatllogeny of East Russia), Khanchuk, A.I., Eds., Vladivostok: Dal’nauka, 2006.

  • Konstantinov, M.M., Kosovets, T.N., Kryazhev, S.G., et al., Stroenie i razvitie zolotonosnykh rudoobrazuyushchikh system (Structure and Evolution of Gold–Bearing Ore–Forming Systems), Moscow: TsNIGRI, 2002.

    Google Scholar 

  • Konstantinov, M.M., Natalenko, V.E., Kalinin, A.I., et al., Zoloto–serebryanoe mestorozhdenie Dukat (Dukat Gold–Silver Deposit) Moscow: Nedra, 1998.

    Google Scholar 

  • Kravtsova, R.G., Borovikov, A.A., Borisenko, A.S., and Prokof’ev, V.Yu., Formation conditions of gold–silver deposits in the northern Okhotsk Region, Russia, Geol. Ore Deposits, 2003, vol. 45, no. 5. pp. 395–415.

    Google Scholar 

  • Kravtsova, R.G., Geokhimiya i usloviya formirovaniya zoloto–serebryanykh rudoobrazuyushchikh sistem Severnogo Priokhot’ya (Geochemistry and Conditions of Formation of the Gold–Silver Ore–Forming Systems of the Northern Okhotsk Region), Novosibirsk: GEO, 2010.

    Google Scholar 

  • Kuznetsov, V.M. and Livach, A.E., Structure and metallogenic zoning of the Balygchan–Sugoi trough, Problemy metallogenii rudnykh raionov Severo–Vostoka Rossii (Metallogenic Problems of Northeast Russia), Magadan: Severo–Vostochnyi Kompleksnyi Nauchno–Issled. Inst., Dal’nevost. Otd. RAN., 2005, pp. 156–176.

    Google Scholar 

  • Ohmoto, H., Systematics of sulfur and carbon isotopes in hydrothermal ore deposits, Econ. Geol., 1972, vol. 5, no. 67, pp. 551–578.

    Article  Google Scholar 

  • Ohmoto, H. and Rye, R.O., Isotope of sulfur and carbon, Geochemestry of Hydrothermal Deposits, Barnes, H.L., Eds., John Wiley & Sons, 1979, pp. 509–567.

    Google Scholar 

  • Ohmoto, H. and Lasaga, A.C., Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems, Geochim. Cosmochim. Acta, 1982, no. 46, pp. 1727–1745.

    Article  Google Scholar 

  • Petrov, O.V., Mikhailov, B.K., Shevchenko. S.S., et al., Isotope–geochemical studies of the unique gold–silver Dukat deposit as a key to understanding of volcanogenic ore formation, Regional. Geol. Metallogen., 2006, vol. 27, pp. 60–76.

    Google Scholar 

  • Rye, R.O., A review of the stable–isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems, Chem. Geol., 2005, no. 215, pp. 5–36.

    Article  Google Scholar 

  • Sakai, H., Isotopic properties of sulfur compounds in hydrothermal processes, Geochem. J., 1968, no. 2, pp. 29–49.

    Article  Google Scholar 

  • Savva, N.E., Kravtsov, V.S., and Alekseev, V.Yu., Dukat deposit, Mestorozhdenie Dukat // Krupnye i superkrupnye mestorozhdeniya rudnykh poleznykh iskopaemykh (Large and Superlarge Ore Deposits), Moscow: 2006, vol. 3, book 1, pp. 385–421.

    Google Scholar 

  • Scheele, N. and Hoefs, J., Carbon isotope fractionation between calcite, graphite and CO2: an experimental study, Contrib. Mineral. Petrol., 1992, no. 112, pp. 35–45.

    Article  Google Scholar 

  • Shanks, W.C.I.I.I., Bischoff, J.L., and Rosenbauer, R.J., Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: interaction of seawater with fayalite and magnetite at 200–350oC, Geochim. Cosmochim. Acta, 1981, no. 45, pp. 1977–1995.

    Article  Google Scholar 

  • Sidorov, A.A., Konstantinov, M.M., Eremin, R.A., et al., Serebro (geologiya, mineralogiya, genezis: zakonomernosti razmeshcheniya mestorozhdenii) (Silver (Geology, Mineralogy, and Genesis: Tendencies in the Deposit Distribution), Moscow: Nauka, 1989.

    Google Scholar 

  • Sidorov, A.V., Filimonova, L.G., Volkov, A.V., Trubkin, N.V., and Chugaev, A.V., Evolutionary historical model of the Dukat Silver Giant, Dokl. Earth Sci., 2012, vol. 444, pp. 696–701.

    Article  Google Scholar 

  • Struzhkov, S.F. and Konstantinov, M.M., Metallogeniya zolota i serebra Okhotsko–Chukotskogo vulkanogennogo poyasa (Metallogeny of Gold and Silver of the Okhotsk–Chukotka Volcanogenic Belt), Moscow: Nauchnyi mir, 2005.

    Google Scholar 

  • Struzhkov, S.F., Konstantinov, M.M., Aristov, V.V., et al., New geological and geochronological data on the gold and silver deposits of the Omsukchan segment of the Okhotsk–Chukotka belt, Kolyma, 1994, nos. 9–10, pp. 2–16.

    Google Scholar 

  • Sturm, M., Lojen, S., Markic, M., and Pezdic, J., Speciation and isotopic composition of sulphur in low–rank coals from four Slovenian coal seams, Acta Chim. Slov., 2009, vol. 56, pp. 989–996.

    Google Scholar 

  • Taylor, Jr.H.P., Frechen, J., and Degens, E.T., Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alno District, Sweden, Geochim. Cosmochim. Acta, 1967, no. 31, pp. 407–430.

    Article  Google Scholar 

  • Tyukova, Ye.E. and Voroshin, S.V., The sulfur isotopic composition of sulfides from ores and host rocks of the Upper Kolyma Region, Magadan Oblast, Russ. J. Pac. Geol., 2008, vol. 27, no. 1, pp. 25–38.

    Google Scholar 

  • Whitney, D.L. and Evans, B.W., Abbreviations for names of rock–forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  • Zakharov, M.N., Kravtsova, R.G., and Pavlova, L.A., Geochemical features of rocks of volcanoplutonic associations of the Dukat gold–silver deposit, Russ. Geol. Geophys., 2002, vol. 43, no. 10, pp. 929–939.

    Google Scholar 

  • Zhao, Z.F. and Zheng, Y.F., Calculation of oxygen isotope fractionation in magmatic rocks, Chem. Geol., 2003, vol. 193, pp. 59–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Dubinina.

Additional information

Russian Text © E.O. Dubinina, L.G. Filimonova, S.A. Kossova, 2019, published in Geologiya Rudnykh Mestorozhdenii, 2019, Vol. 61, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinina, E.O., Filimonova, L.G. & Kossova, S.A. Isotope (δ34S, δ13C, δ18O) Compositions of Disseminated Sulfide Mineralization in Igneous Rocks of the Dukat Ore Deposit (Northeastern Russia). Geol. Ore Deposits 61, 38–49 (2019). https://doi.org/10.1134/S1075701519010033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701519010033

Keywords

Navigation