Skip to main content
Log in

Niobium Minerals As Indicators of a Genetic Link Between Tin-Bearing Zwitter and Lithium–Fluorine Granite of the Verkhneurmiysky Massif in the Amur River Region

  • Minerals and Mineral Assemblages
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Niobium minerals in zwitter and lithium–fluorine granite of the Verkhneurmiysky granitic massif in the Amur River region—fergusonite-(Y), euxenite-(Y), samarskite-(Yb), aeschynite, Nb-bearing wolframite— have been described and the similarity of their species composition established. The same-named and crystal-chemically allied minerals from zwitter and granite are characterized by similar complexes of such trace elements as W, REE, Mn, Fe, Pb, U, and Sc. A genetic link between Sn-bearing zwitter and Li–F granite is stated. Compositional varieties of niobium minerals in granite and zwitter reflect a change in the physicochemical conditions of mineral formation, when the magmatic stage is followed by a pneumatolytic–hydrothermal process. The postmagmatic evolution of niobium minerals is characterized by increased concentrations of Y, Pb, U, Fe and decreased concentrations of W, Ta, REE, Ti, Sc, and Th. The mineral occurrences in the western sector of the Verkhneurmiysky Cu–W–Sn cluster are appraised as promising for Nb, Y, and REE. Fergusonite, samarskite, euxenite, and Nb-bearing wolframite are indicators of rare metal mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleksandrov, I.V., Modeli endogennogo tantalo-niobievogo orudeneniya (Models of Endogenous Tantalum–Niobium Ore Formation), Moscow: Nauka, 1973.

    Google Scholar 

  • Alekseev, V.I., Metasomatic zoning of ore fields in the Badzhalsky area (Amur Region), Zap. Vsesoyuzn. Mineral. O-va, 1989, no. 5, pp. 27–37.

    Google Scholar 

  • Alekseev, V.I., Litii-ftoristye granity Dal’nego Vostoka (Far East Lithium–Fluorine Granites), St-Petersburg: St-Petersburg Gorny Univ., 2014.

    Google Scholar 

  • Alekseev, V.I., and Marin, Yu.B., Composition and evolution of the accessory mineralization of Li–F granites in the Far East as indicators of their ore potential, Geol. Ore Deposits, 2015, vol. 57, no. 8, pp. 635–644.

    Article  Google Scholar 

  • Beskin, S.M., Marin, Yu.B., Matias, V.V., and Gavrilova, S.P., What is “the rare-metal granite,” Zap. Mineral. O-va, 1999, no. 6, pp. 28–40.

    Google Scholar 

  • Beskin, S.M. and Marin, Yu.B., Complex systematization of tantalum and tantalum-niobium deposits, Zap. Mineral. O-va, 2015, no. 3, pp. 45–54.

    Google Scholar 

  • Bogdanov, V.I., Kokorin, A.M., Korostelev, P.G., et al., The composition and genesis of the Pravourmiyskaya tin ore zone, Mineralogiya i geokhimiya olovorudnykh mestorozhdenii, (Mineralogy and Geochemistry of Tin Ore Deposits), Vladivostok: DVNTs AN SSSR, 1979, pp. 36–51.

    Google Scholar 

  • Bolotnikov, A.F., Kravchenko, N.S., and Krutov, N.K., Magmatizm i rudonosnost Badzhal’skogo raiona (Magmatism and Ore Potential of the Badzhal Area), Khabarovsk: DVIMS, 1975.

    Google Scholar 

  • Borovikov, A.A., Goverdovskiy, V.A., Borisenko, A.S., et al., Composition and metal contents of ore-forming fluids of the Kalguty Mo–W(Be) deposit (Gorny Altai), Russ. Geol. Geophys., 2016, vol. 57, no. 4, pp. 647–662.

    Article  Google Scholar 

  • Brodskaya, R.L. and Marin, Yu.B., Ontogenic analysis of mineral individuals at micro-and nanolevel for the restoration of ore-forming conditions and assessment of mineral processing properties, J. of Mining Institute, 2016, vol. 219, pp. 369–376.

    Google Scholar 

  • Brusnitsyn, A.I., Panova, E.G., and Smolensky, V.V., Finding of lithium–fluorine granites within the Verhneurmiysky ore district, Izv. Vyssh. Uchenb. Zaved., Geol. Razvedka, 1993, no. 6, pp. 150–153.

    Google Scholar 

  • Burde, B.I. and Kravchenko, N.S., Facial-genetic series of tin ore occurrence by the example of the ore clusters of the Amur River region, Mineralogiya metamorficheskikh i rudnykh obrazovanii of Dal’negj Vostoka (Mineralogy of the Far East Metamorphic and Ore Formations), Vladivostok: DVNTs AN SSSR, 1981, 13–31.

    Google Scholar 

  • Duran, C.J., Seydoux-Guillaume, A.M., Bingen, B., et al., Fluid-mediated alteration of (Y, REE, U, Th)–(Nb, Ta, Ti) oxide minerals in granitic pegmatite from the Evje–Iveland district, southern Norway. Mineral. Petrol., 2016, vol. 110, no. 5, pp. 581–599.

    Google Scholar 

  • Gavrilenko, V.V. and Sakhonenok, V.V., Osnovy geokhimii redkikh litofil’nykh metallov (Principles of Trace Lithophile Metal Geochemistry), Leningrad: LGU, 1986.

    Google Scholar 

  • Gavrilenko, V.V., Eflmenko, S.A., Tkachenko, G.A., et al., Geological–structural and mineralogical-geochemical features of the Pravourmijsky deposits. Geol. Rudn. Mestorozhd., 1992, no. 6, pp. 34–47.

    Google Scholar 

  • Gavrilenko, V.V., Gajdamako, I.M., and Smolensky, V.V., Rare earth elements, scandium and niobium in wolframites of the Badjal ore districts (The Far East), Zap. Mineral. Ova, 1995, no. 3, pp. 48–56.

    Google Scholar 

  • Gavrilenko, V.V. and Panova, E.G., Geokhimiya, genesis, i tipomorfizm mineralov mestorozhdenii olova i vol’frama, (Geochemistry, Origin, and Mineralogical Peculiarities of the Tin and Tungsten Ore Deposits), St. Petersburg: Nevskiy kurier, 2001.

    Google Scholar 

  • Geodynamics, magmatism and metallogeny of the Russian East. Ed. Khanchuk A.I. Vladivostok: Dalnauka, 2006, vol. 2, p. 981 (in Russian).

  • Geologiya olovorudnykh mestorozhdenii SSSR (Geology of Tin Deposits of the USSR), Lugov, S.F., Eds., Moscow: Nedra, 1986.

  • Gonevchuk, V.G., Olovonosnye magmaticheskie sistemy Dal’nego Vostoka: magmatizm I rudogenez (Tin-Bearing Systems of the Far East: Magmatism and Ore Genesis), Vladivostok: Dalnauka, 2002.

    Google Scholar 

  • Gorzhevskaya, S.A., Sidorenko, G.A., and Ginzburg, A.I., Titano-tantalo–niobaty (svoistva, osobennosti sostava, i usolviya obrazovaniya (Titanium–Tantalum–Niobates: Properties, Composition, and Formation condition), Moscow: Nedra, 1974.

    Google Scholar 

  • Grigoryev, S.I., The composition of Late Mesozoic granites in the Badzhalsky and Komsomolsky ore areas, their petrogenesis and relation with ore body. Reg. Geol. Metallogen., 1997, no. 6, pp. 103–115.

    Google Scholar 

  • Harlaux, M., Marignac, Ch., Cuney, M., et al., Nb–Ti–Y–HREE–W–U oxide minerals with uncommon compositions associated with the tungsten mineralization in the Puy-Les-Vignes deposit (Massif Central, France): evidence for rare-metal mobilization by late hydrothermal fluids with a peralkaline signature, Can. Mineral., 2015, vol. 53, no. 4, pp. 653–672.

    Google Scholar 

  • Hien-Dinh, T.T., Dao, D.A., Tran, T., et al., Lithium-rich albite–topaz-lepidolite granite from Central Vietnam: a mineralogical and geochemical characterization, Eur. J. Miner, 2017, vol. 29, no. 1, pp. 35–52.

    Article  Google Scholar 

  • Kuzmenko, M.V. and Eskova, E.M., Tantal i niobii (Tantalum and Niobium), Moscow: Nauka, 1968.

    Google Scholar 

  • Marin, Yu.B., Skublov, G.T., and Gulbin, Yu.L., Mineralogical and geochemical criteria of local forecasting rare metal deposits, Mineralogicheskoe kartirovanie i indicatory orudeneniya (Mineralogical Mapping and Indicators of Mineralization), Leningrad: Nauka, 1990, pp. 67–94.

    Google Scholar 

  • Rub, A.K. and Rub, M.G., Redkometal’nye granity Primorya (Rare-Metal Granite of the Amur River Region), Moscow: VIMS, 2006.

    Google Scholar 

  • Rundqvist, D.V., Denisenko, V.K., and Pavlova, I.G., Greizenovye mestorozhdeniya (ontogenez i filogenez) (Greisen Deposits (Ontogeny and Phylogeny), Moscow: Nedra, 1971.

    Google Scholar 

  • Semenov, E.I., Orudenenie i mineralizatsiya redkikh zemel, toriya i urana, (Ores and Mineralization of Rare Earths, Thorium, and Uranium (Lanthanides and Actinides), Moscow: GEOS, 2001.

    Google Scholar 

  • Semenyak, B.I., About “zwitters” of the Verkhneurmiyskiy ore field, Rudnye mestorozhdeniya Dal’nego Vostoka (Far East Ore Deposits), Vladivostok; DVNTs AN SSSR, 1983, pp. 20–25.

    Google Scholar 

  • Semenyak, B.I., Efimenko, S.A., Korostelev, P.G., and Tkachenko, G.A., Metallogeny of the Badzhalsky ore district, Metallogeniya glavnykh rudnykh raionov Dal’nego Vostoka (Metallogeny of the Main Ore Districts of the Far East), Vladivostok: FEB USSR AS, 1988, pp. 57–84.

    Google Scholar 

  • Simmons, W.B., Hanson, S.L., and Falster, A.U., Samarskite-( Yb): a new species of the samarskite group from the Little Patsy pegmatite, Jefferson county, Colorado, Can. Mineral., 2006, vol. 44, pp. 1119–1125.

    Google Scholar 

  • Singh, Y., Pandit, P.S.C., Bagora, S., and Jain, P.K., Mineralogy, geochemistry, and genesis of co-genetic granite–pegmatite-hosted rare metal and rare earth deposits of the Kawadgaon area, Bastar craton, Central India, J. Geol. Soc. India, 2017, vol. 89, no. 2, pp. 115–130.

    Article  Google Scholar 

  • Vasiljev, N.V., Chevychelov, V.Yu., Zaraisky, G.P., et al., Peculiarities of tantalum–niobium mineralization of Taikeusky ore cluster (Polar Urals), Zap. Mineral. O-va, 2008, no. 5, pp. 1–16.

    Google Scholar 

  • Vinogradova, L.G., Barabanov, V.F., and Sorokin, N.D., About distribution of iron, manganese, niobium and scandium in wolframites, Zap. Ross. Mineral. O-va, 1980, no. 3, pp. 352–358.

    Google Scholar 

  • Voloshin, A.V., Tantalo-niobaty. Sistematika, kristallokhimiya i evolyutsiya mineraloobrazovaniya v granitnykh pegmatitakh (Tantalo-niobates. Systematics, Crystal Chemistry, and Evolution of Mineral Foramtion in Granite Pegmatites), Sankt Petersburg: Nauka, 1993.

    Google Scholar 

  • Watanabe, Y., Kon, Y., Echigo T., and Kamei, A., Differential fractionation of rare earth elements in oxidized and reduced granitic rocks: implication for heavy rare earth enriched ion adsorption mineralization, Resource Geol., 2017, vol. 67, no. 1, pp. 35–52.

    Article  Google Scholar 

  • Xiong, Y.-Q., Shao, Y.-J., Zhou, H.-D., et al., Ore-forming mechanism of quartz-vein-type W–Sn deposits of the Xitian district in SE China: Implications from the trace element analysis of wolframite and investigation of fluid inclusions, Ore Geol. Rev., 2017, vol. 83, pp. 152–173.

    Article  Google Scholar 

  • Yang, W.-B., Niu, H.-C., Shan, Q., et al., Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr–REE–Nb mineralization, Miner. Deposita, 2013, vol. 49, no. 4, pp. 451–470.

    Article  Google Scholar 

  • Yuan, S., Peng, J., Hu, R., et al., A precise U–Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Miner. Deposita, 2008, vol. 43, pp. 375–382.

    Article  Google Scholar 

  • Yurgenson, G.A., Tipomorfizm i rudnye formatsii (Typomorphism and Ore Formations) Novosibirsk: Nauka, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Alekseev.

Additional information

Original Russian Text © V.I. Alekseev, K.G. Sukhanova, Yu.B. Marin, 2018, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2018, No. 1, pp. 85–100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, V.I., Sukhanova, K.G. & Marin, Y.B. Niobium Minerals As Indicators of a Genetic Link Between Tin-Bearing Zwitter and Lithium–Fluorine Granite of the Verkhneurmiysky Massif in the Amur River Region. Geol. Ore Deposits 60, 698–707 (2018). https://doi.org/10.1134/S1075701518080020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701518080020

Keywords

Navigation