Skip to main content
Log in

Age and Ore Matter Sources of Au-Sulfide Mineralization of the Tanadon Deposit, Republic of North Ossetia–Alania, Greater Caucasus

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The results of geochronological, petrological–mineralogical, and isotope-geochemical studies of the Tanadon gold deposit in the Greater Caucasus (Republic of North Ossetia–Alania) have made it possible to determine the age of ore veins and identify ore matter sources of sulfide mineralization. The Tanadon deposit is localized in Paleozoic synmetamorphic granitic rocks at the southern margin of the epi-Hercynian Scythian Plate, which is included in the tectonic zone of the Main Caucasus Range. The orebodies are represented by quartz veins varying in thickness and containing complex sulfide mineralization (pyrite, arsenopyrite, chalcopyrite, pyrrhotite, galena, sphalerite, stannite, cobaltite, and bismuthinite). Arsenopyrite is the main repository of invisible gold. Mineralogical data provide evidence for hydrothermal ore formation, which proceeded at least in two stages, giving rise to earlier pyrite + arsenopyrite and later galena + sphalerite + chalcopyrite mineral assemblages. The Tanadon deposit is a zone of intense young magmatic activity. Neointrusions widespread therein are related to the Early Pliocene Tsana Complex (trachyandesitic dikes, ~4.7 Ma in age) and to the Late Pliocene–Early Pleistocene Tepli Complex (dacitic necks, ~1.4 Ma). According to K–Ar dating of sericite from ore-bearing veins, the Tanadon deposit formed synchronously with Early Pliocene dikes of the Tsana Complex. The total duration of the hydrothermal process likely did not exceed hundreds of thousands of years. As follows from Pb-isotope-geochemical data, hydrothermal processes coeval with Early Pliocene magmatic activity, as well as geological relationships between ore-bearing veins and trachyandesitic dikes, show that the sulfide mineralization of the Tanadon deposit is genetically related to the intrusive Tsana Complex. The main source of ore components is represented by hydrothermal solutions produced in an Early Pliocene melt spot localized beneath the considered part of Greater Caucasus. In the adjacent territory of Georgia, a number of ore objects similar in structure and mineral composition to the Tanadon deposit are also genetically and spatially related to the intrusions of the Tsana Complex. Therefore, the Tsana Complex should be regarded as productive and the areas occupied by Early Pliocene intrusive bodies as promising for Au-bearing arsenopyrite and base-metal mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belyankin, D.S., Eremeev, V.P., and Petrov, V.P., New data about neointrusions in the basin of the Urukh River (Central Caucasus), Tr. Inst. Geol. Nauk Akad Nauk SSSR, Petrograf. Ser., 1938, vol. 4, no. 3, pp. 1–21.

    Google Scholar 

  • Bogovin, V.D., Khetagurov, G.V., Dolgov, G.A., et al., Obobshchenie geologicheskikh materialov po Digorskomu rudnomy raionu pa 1971–1972. Geologicheskii otchet Cevero-Osetinskoi KGRE (The Summary of Geological Data for Digora Ore District for 1971–1972. Geological Report of the North-Ossetia KGRE) Ordzhonikidze, 1973.

    Google Scholar 

  • Borsuk, A.M., Mezozoiskie i kainozoiskie magmaticheskie formatsii Bol’shogo Kavkaza (Mesozoic and Cenozoic magmatic formations of the Greater Caucasus) Moscow: Nauka, 1979.

    Google Scholar 

  • Chernyshev, I.V., Chugaev, A.V., and Shatagin, K.N., High-precision Pb isotope analysis by multicollector-icpmass-spectrometry using 205Tl/203Tl normalization: optimization and calibration of the method for the studies of Pb isotope variations, Geochem. Int., 2007, vol. 45, no. 11, pp. 1065–1076.

    Article  Google Scholar 

  • Ershov, A.D., Ore productivity of Zemo Racha and Svaneti, Sov. Geologiya, 1940, no. 8, pp. 24–37.

    Google Scholar 

  • Gazeev, V.M., Gurbanov, A.G., Goltsman, Yu.V., et al., Fiagdon effusive-sill complex (Republic of North Ossetia–Alania, Russia): geochemistry, geodynamic setting and problems of ore productivity, Vestn. Vladikavkaz. Nauchn. Ts., 2014, vol. 14, no. 2, pp. 21–34.

    Google Scholar 

  • Goff, F. and Janik, C.J., Gas geochemistry of the Valles Caldera region, New Mexico and comparisons with gases at Yellowstone, Long Valley and other geothermal systems, J. Volcanol. Geotherm. Res., 2002, vol. 116, pp. 299–323.

    Google Scholar 

  • Grekov, I.I., Lavrishchev, V.A., and Enna, N.L., The stages of orogenesis and synorogenic mineralization in the Northern Caucasus, Regional. Geol. Metallogen., 2008, no. 35, pp. 105–112.

    Google Scholar 

  • Kekelia, S.A., Kekelia, M.A., Kuloshvili, S.I., et al., Gold deposits and occurrences of the Greater Caucasus, Georgia Republic: their genesis and prospecting criteria, Ore Geol. Rev., 2008, vol. 34, pp. 369–386.

    Google Scholar 

  • Kilias, S.P., Naden, J., Cheliotis, I., et al., Epithermal gold mineralisation in the active Aegean Volcanic Arc: the Profitis Ilias deposit, Milos island, Greece, Mineral. Deposita, 2001, vol. 36, pp. 32–44.

    Article  Google Scholar 

  • Konstantinov, M.M., Laypanov, Kh.Kh., Danil’chenko, V.A., et al., Geological structure and perspectives of Tanadon Au-arsenopyrite deposit, Geol. Razved. Nedr, 2005, nos. 2–3, pp. 2–10.

    Google Scholar 

  • Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., A chemical classification of volcanic rocks based on the total alkali–silica diagram, J. Petrol., 1986, vol. 27, pp. 745–750.

    Google Scholar 

  • Lebedev, V.A. Chernyshev, I.V., Bubnov, S.N., and Medvedeva, E.S., Chronology of magmatic activity of the Elbrus volcano (Greater Caucasus): evidence from K-Ar isotope dating of lavas, Dokl. Earth Sci., 2005, vol. 405A, no. 9, pp. 1321–1326.

    Google Scholar 

  • Lebedev, V.A., Chernyshev, I.V., Chugaev, A.V., et al., Geochronology of eruptions and parental magma sources of Elbrus Volcano, the Greater Caucasus: K-Ar and Sr-Nd-Pb isotope data, Geochem. Int., 2010, vol. 48, no. 1, pp. 41–67.

    Article  Google Scholar 

  • Lebedev, V.A., Dudauri, O.Z., Togonidze, M.G., and Goltsman, Yu.V., The age of young intrusions of Tsana complex (Greater Caucasus) and isotope-geochemical evidence for their origin from hybrid magmas, Petrology, 2016a, vol. 24, no. 4, pp. 315–335.

    Article  Google Scholar 

  • Lebedev, V.A., Chugaev, A.V., Vashkidze, G.T., and Parfenov, A.V., Formation stages and ore matter sources of the Devdoraki copper deposit, Kazbek volcanic center, the Greater Caucasus, Geol. Ore Deposits, 2016b, vol. 58, no. 6, pp. 465–484.

    Article  Google Scholar 

  • Lebedev, V.A., Dudauri, O.Z., and Goltsman, Yu.V., Early Pleistocene magmatism in the central part of the Greater Caucasus, Dokl. Earth Sci., 2017, vol. 477, no. 1, pp. 1265–1269.

    Article  Google Scholar 

  • Lebedev, V.A., Parfenov, A.V., Vashakidze, G.T., et al., Chronology of magmatic activity and petrologic-mineralogical characteristics of lavas of Kazbek Quaternary volcano, Greater Caucasus, Petrology, 2018, vol. 26, no. 1, pp. 1–28.

    Google Scholar 

  • Ol’khovsky, T.P. and Tibilov, S.M., Sostavlenie spetsializirovannoi geological osnovy masshtaba 1: 50000 dlya prognozno-metallogenicheskoi karty Gornoi Osetii. Otchet SOGGP “Sevosgeolgorazvedka” (The Compilation of Special Geological Framework on a Scale of 1: 50000 for Forecasting–Metallurgical Map of Gornaya Ossetia. Report of SOGGP “Sevosgeolgorazvedka”), Vladikavkaz, 1998.

    Google Scholar 

  • Pis’menny, A.N., Tereshchenko, V.V., Perfiliev, V.A., et al., Gosudarstvennaya geologicheskaya karta RF, masshtaba 1: 200000. Izdanie vtoroe. Seriya Kavkazskaya. List K-38-VIII, XIV (Sovetskoe). Ob’yasnitel’naya zapiska) (State Geological Map of the Russian Federation on a Scale 1: 200000. Second Edition. Caucasus Series. Sheet K-38-VIII, XIV (Sovetskoe), St. Petersburg: VSEGEI. 2002.

    Google Scholar 

  • Rae A.J., Cooke D.R., Phillips D. et al. Spatial and temporal relationships between hydrothermal alteration assemblages at the Palinpinon geothermal field, Philippines-implications for porphyry and epithermal ore deposits, Volcanic, Geothermal and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth, Simmons, S.F. and Graham, I.J., Eds., Soc. Econ. Geol., Spec. Publ., 2003, vol. 10, pp. 223–246.

    Google Scholar 

  • Somin, M.L., The major features of structure of pre-Alpine basement in the Greater Caucasus, Bol’shoi Kavkaz v Al’piiskuyu epokhu (Greater Caucasus in the Alpine Epoch), Leonov, Yu.G., Moscow: GEOS, 2007, pp. 15–3.

    Google Scholar 

  • Steiger, R.H. and Jager, E., Subcomission on geochronology: convention on the use of decay constants in geo-and cosmochronology, Earth Planet. Sci. Lett., 1977, no. 36, pp. 359–362.

    Article  Google Scholar 

  • Stimac, J.A., Goff, F., and Wohletz, K., Thermal modeling of the Clear Lake magmatic–hydrothermal system, California, USA. Geothermics, 2001, vol. 30, pp. 349–390.

    Article  Google Scholar 

  • Togonidze, M.G. and Dudauri, O.Z., Pliocene volcanic center on the southern slope of the Greater Caucasus (Zemo Racha), Tr. Inst. Geol. Respubliki Gruzii, Nov. Ser., 2008, vol. 124, pp. 232–237.

    Google Scholar 

  • Watanabe, Y., Takagi, T., Kaneko, N., and Suzuki, Y., Mineral and hydrocarbon resources, in The Geology of Japan, Moreno T., Walles S., Kojima T., and Gibbons W., Eds., Geol. Soc. London, 2016, pp. 431–455.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Lebedev.

Additional information

Original Russian Text © V.A. Lebedev, A.V. Chugaev, A.V. Parfenov, 2018, published in Geologiya Rudnykh Mestorozhdenii, 2018, Vol. 60, No. 4, pp. 371–391.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, V.A., Chugaev, A.V. & Parfenov, A.V. Age and Ore Matter Sources of Au-Sulfide Mineralization of the Tanadon Deposit, Republic of North Ossetia–Alania, Greater Caucasus. Geol. Ore Deposits 60, 328–346 (2018). https://doi.org/10.1134/S1075701518030042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701518030042

Keywords

Navigation