Skip to main content
Log in

Mineral Systems, Their Types, and Distribution in Nature: 2. Products of Contemporary Fumarole Activity at Tolbachik Volcano (Russia) and Vulcano (Italy)

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The number of mineral species in which a certain chemical element is species-defining (according to statistical data up to 2015) has been specified. Seventy chemical elements are species-defining for 5044 minerals. The following chemical elements lead in the composition of minerals (number of mineral species in parentheses): oxygen (4115), hydrogen (2800), silicon (1471), calcium (1167), sulfur (1056), aluminium (985), sodium (949), iron (945), copper (636), phosphorus (597), arsenic (594), and magnesium (571). The distribution of mineral species by various systems in the products of contemporary fumarole activity at two volcanoes, Tolbachik in Kamchatka, Russia, and Vulcano in Sicily, Italy, has been compared. These locations were also compared for the distribution of species-defining elements. Thus, it has been determined that in fumaroles of both volcanoes, Tl, S, Cl, F and Na are “excessive,” present in minerals in elevated amounts, whereas H, Ca, Fe, and Mn are “deficient.” The abundance of Cu, Se, V, Mg, Zn, As, and F in minerals at Tolbachik is higher than the global mean values of these elements in the Earth’s crust, whereas the abundance is significantly lower at Vulcano. Sn, I, Br, K, Pb, Al, Fe, and Bi demonstrate the opposite behavior. Comparison of the Yadovitaya and Arsenatnaya fumaroles at the Tolbachik volcano showed that the products of the former are richer in H, Cl, Cu, S, K, O, Al, Fe, and Pb, and poorer in As, Ca, Mg, and Na as species-defining elements. In addition, V-and Mo-bearing minerals are found only at Yadovitaya, whereas minerals containing F, Ti, В, Те, and Zn are known only at Arsenatnaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bulakh, A.G., Isomorphism and choosing the mineral name, Zap. Ross. Mineral. O-va, 2009a, vol. 138, no. 3, pp. 108–111.

    Google Scholar 

  • Bulakh, A.G., End members, dominant valency, and identifying minerals of mixed composition, Zap. Ross. Mineral. O-va, 2009b, no. 4, pp. 39–44.

    Google Scholar 

  • Bulakh, A.G., Zolotarev, A.A., and Krivovichev, V.G., Struktury, izomorfizm, formuly, klassifikatsiya mineralov (Structures, Isomorphism, Formulas, Classification of Minerals), St. Petersburg: St. Petersb. Univ., 2014.

    Google Scholar 

  • Bykova, E.Y., Berlepsch, P., Kartashov, P.M., Brugger, J., Armbruster, T., and Criddle, A.J., Vergasovaite Cu3O[(Mo,S)O4][SO4], a new copper—oxy-molybdate— sulfate from Kamchatka, Schweiz. Miner. Petr. Mitt., 1998, vol. 78, pp. 479–488.

    Google Scholar 

  • Campostrini, I., Demartin, F., and Gramaccioli, C.M., Vulcano: ein auβergewöhnlicher Fundpunkt von neuen und seltenen Mineralien, Miner.-Welt, 2010, vol. 21, no. 3, pp. 40–57.

    Google Scholar 

  • Cheynet, B., Dall’Aglio, M., Garavelli, A., Grasso, M.F., Vurro, F., Trace elements from fumaroles at Vulcano Island (Italy): rates of transport and a thermochemical model, J. Volcanol. Geotherm. Res., 2000, vol. 95, pp. 273–283.

    Article  Google Scholar 

  • Christy, A.G., Anomalous mineralogical diversity in the periodic table, and its causes, Mineral. Mag., 2015, vol. 79, pp. 33–49.

    Article  Google Scholar 

  • Demartin, F., Gramaccioli, C.M., and Campostrini, I., Demicheleite-(Cl), a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy, Am. Mineral., 2009a, vol. 94, pp. 1045–1048.

    Google Scholar 

  • Demartin, F., Gramaccioli, C.M., and Campostrini, I., Brontesite, (NH4)3PbCl5, a new product of fumarolic activity from La Fossa Crater, Vulcano, Aeolian Islands, Italy, Can. Mineral., 2009b, vol. 47, pp. 1237–1243.

    Article  Google Scholar 

  • Demartin, F., Campostrini, I., and Gramaccioli, C.M., Panichiite, natural ammonium hexachlorostannate(IV), (NH4)2SnCl6, from La Fossa crater, Vulcano, Aeolian Islands, Italy, Can. Mineral., 2009c, vol. 47, pp. 367–372.

    Article  Google Scholar 

  • Demartin, F., Gramaccioli, C.M., and Campostrini, I., Demicheleite-(i), BiSI, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy, Mineral. Mag., 2010, vol. 74, pp. 141–145.

    Article  Google Scholar 

  • Demartin, F., Campostrini, I., Castellano, C., and Gramaccioli, C.M., Argesite, (NH4)7Bi3Cl16, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy: a first example of the [Bi2Cl10]4–anion, Am. Mineral., 2012, vol. 97, pp. 1446–1451.

    Article  Google Scholar 

  • Dolivo-Dobrovolsky, V.V., Dominant valency, end members, and reciprocal systems, Zap. Ross. Mineral. O-va, 2009, vol. 142, no. 4, pp. 44–52.

    Google Scholar 

  • Garavelli, A. and Vurro, F., Barberiite, NH4B4, a new mineral from Vulcano, Aeolian Islands, Italy, Am. Mineral., 1994, vol. 79, pp. 381–384.

    Google Scholar 

  • Garavelli, A., Laviano, R., and Vurro, F., Sublimate deposition from hydrothermal fluids at the Fossa crater—Vulcano, Italy, Eur. J. Mineral., 1997, vol. 9, pp. 423–432.

    Article  Google Scholar 

  • Garavelli, A., Mozgova, N.N., Orlandi, P., Bonacorsi, E., Pinto, D., Moelo, Y., and Borodaev, Y., Rare sulfosalts from Vulcano, Aeolian Islands, Italy. VI. Vurroite, Pb20Sn2(Bi,As)22S54Cl6, a new mineral species, Can. Mineral., 2005, vol. 43, pp. 703–711.

    Article  Google Scholar 

  • Gramaccioli, C.M., Demartin, F., Campostrini, I., and Orlandi, P., Demicheleite, BiSBr, a new mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy, Am. Mineral., 2008, vol. 93, pp. 1603–1607.

    Article  Google Scholar 

  • Hatert, F. and Burke, E.A.J., The IMA-CNMNC dominant-constituent rule revised and extended, Can. Mineral., 2008, vol. 46, pp. 717–728.

    Article  Google Scholar 

  • Hawthorne, F.C., The use of end-member charge-arrangements in defining new mineral species and heterovalent substitutions in complex minerals, Can. Mineral., 2002, vol. 40, pp. 699–710.

    Article  Google Scholar 

  • Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A., and Yang, H., Mineral evolution, Am. Mineral., 2008, vol. 93, pp. 1693–1720.

    Article  Google Scholar 

  • Hazen, R.M., Bekker, A., Bish, D.L., Bleeker, W., Downs, R.T., Farquhar, J., Ferry, J.M., Grew, E.S., Knoll, A.H., Papineau, D.F., Ralph, J.P., Sverjensky, D.A., and Valley, J.W., Needs and opportunities in mineral evolution research, Am. Mineral., 2011, vol. 96, pp. 953–963.

    Article  Google Scholar 

  • Hazen, R.M., Paleomineralogy of the Hadean eon: a preliminary species list, Am. J. Sci., 2013, vol. 313, pp. 807–843.

    Article  Google Scholar 

  • Krivovichev, S.V. Complexity, diversity and evolution of the mineral world: from Vernadsky to the present day, in Vernadskii i XXI vek: geosfera, biosfera, noosfera i simmetriya (Vernadsky and 21th century: Geosphere, Biosphere, Noosphere and Symmetry), Sofia: St. Ivan Rilski, 2013a. P. 26–32.

    Google Scholar 

  • Krivovichev, S.V., Structural complexity of minerals: information storage and processing in the mineral world, Mineral. Mag., 2013b, vol. 77, no. 3, pp. 275–326.

    Article  Google Scholar 

  • Krivovichev, V.G. and Charykova, M.V., Kassifikatsiya mineral’nykh system (Classification of Mineral Systems), St. Petersburg: St.-Petersb. Univ., 2013a.

    Google Scholar 

  • Krivovichev, V.G. and Charykova, M.V., Number of minerals of various chemical elements: statistics 2012 (a new approach to an old problem), Zap. Ross. Mineral. O-va, 2013b, vol. 142, no. 4, pp. 36–42.

    Google Scholar 

  • Krivovichev, V.G. and Charykova, M.V., Mineral systems, their types and distribution in nature. 1. Khibiny, Lovozero and the Mont Saint-Hilaire, Zap. Ross. Mineral. O-va, 2015, vol. 144, no. 4, pp. 1–12.

    Google Scholar 

  • Krivovichev, V.G. and Charykova, M.V., Mineral and physical-chemical systems of evaporites: geochemical and thermodynamical aspects, Zap. Ross. Mineral. O-va, 2016, vol. 145, no. 2, pp. 30–43.

    Google Scholar 

  • Mandarino, J.A., Nickel, E.H., and Cesbron, F., Rules of procedure of the commission on new minerals and mineral names, international mineralogical association, Can. Mineral., 1984, vol. 22, pp. 367–368.

    Google Scholar 

  • Nickel, E.H., Solid solutions in mineral nomenclature, Can. Mineral., 1992, vol. 30, pp. 231–234.

    Google Scholar 

  • Nickel, E.H., The definition of a mineral, Can. Mineral., 1995, vol. 33, pp. 689–690.

    Google Scholar 

  • Nickel, E.H. and Grice, J.D., The IMA commission on new minerals and mineral names: procedures and guidelines on mineral nomenclature, Can. Mineral., 1998, vol. 36, pp. 913–926.

    Google Scholar 

  • Nikolaev, S.M., Statistika sovremennoi mineralogicheskoi informatsii. 2-oe izd., (Statistics of Modern Mineralogical Information. 2nd Ed.), Novosibirsk: GEO, 2009.

    Google Scholar 

  • Oberti, R., Ottolini, L., Camara, F., and Della Ventura, G., Crystal structure of non-metamict Th-rich hellandite-(Ce) from Latium (Italy) and crystal chemistry of the hellanditegroup minerals, Am. Mineral., 1999, vol. 84, pp. 913–921.

    Article  Google Scholar 

  • Oberti, R., Ventura, G.D., Ottolini, L., Hawthorne, F.C., and Bonazzi, P., Re-definition, nomenclature, and crystalchemistry of the hellandite group, Am. Mineral., 2002, vol. 87, pp. 745–752.

    Google Scholar 

  • Oppenheimer C., Fischer T.P., Scaillet B. Volcanic degassing: process and impact, Treatise on Geochemistry. Volume 4, Amsterdam, 2014, pp. 111–179.

    Google Scholar 

  • Pasero, M., The New IMA List of Minerals. 2016. http://pubsites.uws.edu.au/ima-cnmnc/.

    Google Scholar 

  • Pekov I.V. New minerals: where are they discovered, Sorosovs. Obrazovat. Zh., 2001, vol. 7, no. 5, pp. 65–74.

    Google Scholar 

  • Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Kartashov, P.M., Polekhovsky, Y.S., Murashko, M.N., and Pushcharovsky, D.Yu., Koksharovite, CaMg2Fe4 3+ (VO4)6, and grigorievite, Cu3Fe4 3+ Al2(VO4)6, two new howardevansite-group minerals from volcanic exhalations, Eur. J. Mineral., 2014, vol. 26, pp. 667–677.

    Article  Google Scholar 

  • Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G., and Pushcharovsky, D.Yu., New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu5O2(AsO4)2, Mineral. Mag., 2015, vol. 79, pp. 33–143.

    Article  Google Scholar 

  • Pekov, I.V., Yapaskurt, V.O., Britvin, S.N., Zubkova, N.V., Vigasina, M.F., and Sidorov, E.G., New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO(AsO4), Mineral. Mag., 2016, vol. 80.

  • Rieder, M., The mineralogical system: can global plots teach us something new?, Mineral. Mag., 2016, vol. 80, pp. 239–248.

    Article  Google Scholar 

  • Urusov, V.S., Natural selection of mineral species, Zap. Ross. Mineral. O-va, 2010, vol. 139, no. 4, pp. 89–100.

    Google Scholar 

  • Vergasova, L.P., Krivovichev, S.V., Semenova, T.F., Filatov, S.K., and Ananiev, V.V., Chloromenite, Cu9O2(SeO3)4Cl6, a new mineral from the Tolbachik volcano, Kamchatka, Russia, Eur. J. Mineral., 1999, vol. 11, pp. 119–123.

    Article  Google Scholar 

  • Vergasova, L.P., Krivovichev, S.V., Britvin, S.N., Filatov, S.K., Burns, P.K., and Ananiev, V.V., Allochalcosellite, Cu+ Cu5 2+Pb(SeO3)2O2Cl5—a new mineral from volcanic exhalations (Kamchatka, Russia), Zap. Ross. Mineral. O-va, 2005, vol. 134, no. 3, pp. 70–73.

    Google Scholar 

  • Vergasova, L.P. and Filatov, S.K., New mineral species in products of fumarole activity of the Great Tolbachik Fissure Eruption, Volcanol. Seismol., 2012, no. 5, pp. 3–12.

    Google Scholar 

  • Vergasova, L.P., Semenova, T.F., Krivovichev, S.V., Filatov, S.K., and Zolotarev, A.A., Nicksobolevite, Cu7(SeO3)2O2Cl6—a new complex copper oxoselenite chloride from Tolbachik fumaroles, Kamchatka Peninsula, Russia, Eur. J. Mineral., 2014, vol. 26, pp. 439–449.

    Article  Google Scholar 

  • Vergasova, L.P. and Filatov, S.K., A study of volcanogenic exhalation mineralization, Volcanol. Seismol., 2016, no. 2, pp. 3–17.

    Google Scholar 

  • Vurro, F., Garavelli, A., Garbarino, C., Moelo, Y., and Borodaev, Y.S., Rare sulfosalts from Vulcano, Aeolian Islands, Italy. II. Mozgovaite PbBi4(S,Se)7, a new mineral species, Can. Mineral., 1999, vol. 37, pp. 1499–1506.

    Google Scholar 

  • Weiss, S., Neue mineralien aus fumarolen am La Fossa-Krater, Vulcano, Italien. Lap., vol. 35, no. 5, pp. 24–28.

  • Yaroshevskiy, A.A., The number of minerals of different chemical elements: statistics 2007, Zap. Ross. Mineral. Ova, 2008, vol. 136, no. 2, pp. 36–42.

    Google Scholar 

  • Yaroshevsky, A.A., Number of minerals of different chemical elements: statistics and some regularities, Zap. Ross. Mineral. O-va, 2003, vol. 132, no. 3, pp. 432–442.

    Google Scholar 

  • Yushkin, N.P., Evolutionary ideas in modern mineralogy, Zap. Vsesoyuz. Mineral. O-va, 1982, vol. 116, no. 4, pp. 3–16.

    Google Scholar 

  • Yushkin, N.P. Evolution of the mineral world, origin of the biosphere and biomineral co-evolution, in Mineraly, mineraloobrazovanie, struktura, raznoobrazie i evolyutsiya mineral’nogo mira, rol’ mineralov v proiskhozhdenii i razvitii zhizni, biomineral’nye vzaimodeistviya (Minerals, Mineral Formation, Structure, Diversity and Evolution of the Mineral World, the Role of Minerals in the Origin of Life, Biomineral Interactions), Yushkin, N.P., Ed., Syktyvkar, 2008, pp. 455–459.

    Google Scholar 

  • Zelenski, M.E., Zubkova, N.V., Pekov, I.V., Polekhovsky, Yu.S., and Pushcharovsky, D.Yu., Cupromolybdite, Cu3O(MoO4)2, a new fumarolic mineral from the Tolbachik volcano, Kamchatka Peninsula, Russia, Eur. J. Mineral., 2012, vol. 24, pp. 749–757.

    Article  Google Scholar 

  • Zhabin, A.G., Is there evolution of mineral species on earth?, Dokl. Akad. Nauk SSSR, 1979, vol. 247, no. 1, pp. 199–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Krivovichev.

Additional information

Original Russian Text © V.G. Krivovichev, M.V. Charykova, 2017, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2017, No. 1, pp. 15–28.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivovichev, V.G., Charykova, M.V. Mineral Systems, Their Types, and Distribution in Nature: 2. Products of Contemporary Fumarole Activity at Tolbachik Volcano (Russia) and Vulcano (Italy). Geol. Ore Deposits 59, 677–686 (2017). https://doi.org/10.1134/S1075701517080050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701517080050

Keywords

Navigation