Skip to main content
Log in

Empirical phengite geobarometer: Background, calibration, and application

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Phengite is a common metamorphic mineral stable in a wide pressure range. The dependence of pressure on silicon content established in the mid-20th century allowed us to propose a phengite-based geobarometer. Recently, the phengite geobarometer was calibrated by Caddik and Thompson (2008) but in the narrow pressure range. However, there attempts have been made to extend this range. We have analyzed the large number of published datasets on phengite composition. These data included both natural and experimental specimens of well defined P–T-conditions. For moderate temperatures (T < 750°C), two groups of phengite are identified. These groups are divided by silicon content value of 3.25 apfu. Different geobarometer equations were suggested for both groups. The precision of these geobarometers is ±0.34 GPa and ±0.56 GPa, respectively. There is no evidence of phengite used as a geobarometer at high temperatures (T > 750°C). The derived dependences were applied to study the conditions of gneiss and schist metamorphism of the Blyb metamorphic complex in the Northern Caucasus. This study shows that the peak pressure of gneiss and schist metamorphism is 2.0–2.2 ± 0.56 GPa. The latter agrees with previous data on the Blyb metamorphic complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amisano-Canesi, A., Chiari, G., Ferraris, G., Ivaldi, G., and Soboleva, S.V., Muscovite- and phengite-3T: crystal structure and conditions of formation, Eur. J. Mineral., 1994, vol. 6, pp. 489–496.

    Article  Google Scholar 

  • Auzanneau, E.M., Schmidt, W., Vielzeuf, D., and Connolly, J.A.D., Titanium in phengite: a geobarometer for high temperature eclogites, Contrib. Mineral. Petrol., 2010, vol. 159, pp. 1–24.

    Article  Google Scholar 

  • Buick, I.S., Stevens, G., and Gibson, R.L., The role of water retention in the anatexis of metapelites in the Bushveld complex aureole, South Africa: an experimental study, J. Petrol., 2004, vol. 45, pp. 1777–1797.

    Article  Google Scholar 

  • Caddick, M.J. and Thompson, A.B., Quantifying the tectono- metamorphic evolution of pelitic rocks from a wide range of tectonic settings: mineral compositions in equilibrium, Contrib. Mineral. Petrol., 2008, vol. 156, pp. 177–195.

    Article  Google Scholar 

  • Chambers, J.A. and Kohn, M.J., Titanium in muscovite, biotite, and hornblende: modeling, thermometry, and rutile activities of metapelites and amphibolites, Am. Mineral., 2012, vol. 97, pp. 543–555.

    Article  Google Scholar 

  • Coggon, R. and Holland, T.J.B., Mixing properties of phengitic micas and revised garnet-phengite thermobarometers, J. Metamorph. Geol., 2002, vol. 20, pp. 683–696.

    Article  Google Scholar 

  • Curetti, N., Levy, D., Pavese, A., and Ivaldi, G., Elastic properties and stability of coexisting 3T and 2M1 phengite polytypes, Phys. Chem. Miner., 2006, vol. 32, pp. 670–678.

    Article  Google Scholar 

  • Domanik, K.J. and Holloway, J.R., The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: implications for deeply subducted sediments, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 4133–4150.

    Article  Google Scholar 

  • Domanik, K.J. and Holloway, J.R., Experimental synthesis and phase relations of phengitic muscovite from 6.5 to 11 GPa in a calcareous metapelite from the Dabie Mountains, China, Lithos, 2000, vol. 52, pp. 51–77.

    Article  Google Scholar 

  • Ernst, W.G., Significance of phengitic micas from lowgrade schists, Am. Mineral., 1963, vol. 48, pp. 1357–1373.

    Google Scholar 

  • Evans, B.W. and Patrick, B.E., Phengite-3T in high-pressure metamorphosed granitic orthogneisses, Seward Peninsula, Alaska, Can. Mineral., 1987, vol. 25, pp. 141–158.

    Google Scholar 

  • Fonarev, V.I., Graphchikov, A.A., and Konilov, A.N., A consistent system of geothermometers for metamorphic complexes, Int. Geol. Rev., 1991, vol. 33, no. 8, pp. 743–783.

    Article  Google Scholar 

  • Forneris, J.F. and Holloway, J.R., Evolution of mineral compositions during eclogitization of subducting basaltic crust, Am. Mineral., 2004, vol. 89, pp. 1516–1524.

    Article  Google Scholar 

  • Gatta, G.D., Rotiroti, N., Lotti, P., Pavese, A., and Curetti, N., Structural evolution of a 2M1 phengite mica up to 11 GPa: an in situ single-crystal X-ray diffraction study, Phys. Chem. Miner., 2010, vol. 37, pp. 581–591.

    Article  Google Scholar 

  • Gemmi, M., Merlini, M., Pavese, A., and Curetti, N., Thermal expansion and dehydroxylation of phengite micas, Phys. Chem. Miner., 2008, vol. 35, pp. 367–379.

    Article  Google Scholar 

  • Grassi, D. and Schmidt, M.W., Melting of carbonated pelites at 8–13 Gpa: generating K-rich carbonatites for mantle metasomatism, Contrib. Mineral. Petrol., 2011a, vol. 16, pp. 169–191.

    Article  Google Scholar 

  • Grassi, D. and Schmidt, M.W., The melting of carbonated pelites from 70 to 700 km depth, J. Petrol., 2011b, vol. 52, pp. 765–789.

    Article  Google Scholar 

  • Güven, N. and Burnham, C.W., The crystal structure of 3T muscovite, Zeit. Kris, 1967, vol. 125, pp. 163–183.

    Article  Google Scholar 

  • Hermann, J. and Green, D.H., Experimental constraints on high pressure melting in subducted crust, Earth Planet. Sci. Lett., 2001, vol. 188, pp. 149–168.

    Article  Google Scholar 

  • Hermann, J. and Spandler, C.J., Sediment melts at sub-arc depths: an experimental study, J. Petrol., 2008, vol. 49, pp. 717–740.

    Article  Google Scholar 

  • Johnson, M.C. and Plank, T., Dehydration and melting experiments constrain the fate of subducted sediments, Geochem., Geophys., Geosyst., 1999, vol. 1. Paper number 1999GC000014.

  • Konilov, A.N., Bondarenko, G.B., Dokukina, K.A., and Kamzolkin, V.A., Sulfides of Blyb metamorphic complex of the northern Caucasus: new type of minerals-container for high pressure and premetamorphic mineral assemblages, Geol. Soc. Am. Bull., 2013, vol. 14, no. 1, pp. 79–86.

    Google Scholar 

  • Massonne, H.J. and Schreyer, W., Phengite geobarometry based on the limiting assemblage with k-feldspar, phlogopite, and quartz, Contrib. Mineral. Petrol., 1987, vol. 96, pp. 212–224.

    Article  Google Scholar 

  • Massonne, H.J. and Szpurka, Z., Thermodynamic properties of white micas on the basis of high-pressure experiments in the systems K2O–MgO–Al2O3–SiO2–H2O and K2O–FeO–Al2O3–SiO2–H2O, Lithos, 1997, vol. 41, pp. 229–250.

    Article  Google Scholar 

  • Miyashiro, A. and Shido, F., Tschermak substitution in lowand middle-grade pelitic schists, J. Petrol., 1985, vol. 26, pp. 449–487.

    Article  Google Scholar 

  • Mookherjee, M. and Redfern, S.A.T., A high-temperature fourier transform infrared study of the interlayer and Si-Ostretching region in phengite-2M1, Clay Miner., 2002, vol. 37, pp. 309–321.

    Article  Google Scholar 

  • Ota, T., Kobayashi, K., Katsura, T., and Nakamura, E., Tourmaline breakdown in a pelitic system: implications for boron cycling through subduction zones, Contrib. Mineral. Petrol., 2008, vol. 155, pp. 19–32.

    Article  Google Scholar 

  • Petrologiya metamorficheskikh kompleksov Bol’shogo Kavkaza (Petrology of Metamorphic Complexes of the Greater Caucasus), Korikovsky, S.P., Ed., St. Petersburg–Moscow: Nauka, 1991.

  • Pawley, A.R. and Holloway, J.R., Water sources for subduction zone volcanism: new experimental constraints, Science, 1993, vol. 260, pp. 664–667.

    Article  Google Scholar 

  • Perchuk, A.L., Metamorphis of the kyanite eclogites of the Krasnaya Skala hole (Peredovoi Range of the Greater Caucasus), Petrologiya, 1993, vol. 1, no. 1, pp. 98–109.

    Google Scholar 

  • Perchuk, A.L. and Philippot, P., Rapid cooling and exhumation of eclogitic rocks from the Greater Caucasus, Russia, J. Metamorph. Geol., 1997, vol. 15, pp. 299–310.

    Article  Google Scholar 

  • Powell, R. and Evans, J.A., A new geobarometer for the assemblage biotite–muscovite–chlorite-quartz, J. Metamorph. Geol., 1983, vol. 1, pp. 331–336.

    Article  Google Scholar 

  • Somin, M.L., Pre-Jurassic basement of the Greater Caucasus: brief overviev, Turk. J. Earth Sci., 2011, vol. 20, pp. 545–610.

    Google Scholar 

  • Thomsen, T.B. and Schmidt, M.W., The biotite to phengite reaction and mica-dominated melting in fluid + carbonatesaturated pelites at high pressures, J. Petrol., 2008, vol. 49, pp. 1889–1914.

    Article  Google Scholar 

  • Tischendorf, G., Förster, H.-J., Gottesmann, B., and Rieder, M., True and brittle micas: composition and solidsolution series, Mineral. Mag., 2007, vol. 71, pp. 285–320.

    Article  Google Scholar 

  • Velde, B., Phengite micas: synthesis, stability, and natural occurrence, Am. J. Sci., 1965, vol. 263, pp. 886–913.

    Article  Google Scholar 

  • Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kamzolkin.

Additional information

Original Russian Text © V.A. Kamzolkin, S.D. Ivanov, A.N. Konilov, 2015, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2015, No. 5, pp. 1–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamzolkin, V.A., Ivanov, S.D. & Konilov, A.N. Empirical phengite geobarometer: Background, calibration, and application. Geol. Ore Deposits 58, 613–622 (2016). https://doi.org/10.1134/S1075701516080092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701516080092

Keywords

Navigation