Skip to main content
Log in

Mineral systems, their types, and distribution in nature. I. Khibiny, Lovozero, and the Mont Saint-Hilaire

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

In accordance with the set of species-defining chemical elements in minerals, n-component systems (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) for all mineral species (4952) known to 2014 inclusive were distinguished. Seventy chemical elements have been established to be species-defining, which are distributed by mineral systems as follows: 1 (29), 2 (62), 3 (68), 4 (61), 5 (61), 6 (55), 7 (49), 8 (38), 9 (28), and 10 (19). The number of mineral species in which certain chemical elements are species-defining has been specified. Oxygen (4041), hydrogen (2755), silicon (1448), calcium (1139), sulfur (1025), aluminum (960), iron (917), sodium (914), copper (616), phosphorous (580), arsenic (575), and magnesium (550) are the leading elements in minerals in the Earth’s crust. It has been found that the most species-defining elements are normally distributed by mineral systems. The distributions of mineral species in various systems from the Khibiny and Lovozero, Kola Peninsula, Russia; and Mont Saint-Hilaire, Quebec, Canada peralkaline plutons were compared and the characters of species-defining element distribution in these localities were compared. Si, Na, K, C, F, Ti, Ce, Zr, Nb, Sr, and Th are “excess” species-defining elements in minerals from the plutons compared to the total number of mineral species, whereas S, Cu, Pb, Cl, B, Te, Ag, Ni, and Be are “scarce” elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akopyan, A.A., Khimicheskaya termodinamika (Chemical Thermodynamics, Moscow: Vysshaya Shkola, 1963.

    Google Scholar 

  • Bulakh, A.G., Isomorphism and choice of the mineral’s name, Geol. Ore Deposits, 2010a, vol. 52, pp. 612–613.

    Article  Google Scholar 

  • Bulakh, A.G., End members, dominant valence, and identification of minerals with mixed composition, Geol. Ore Deposits, 2010b, vol. 52, pp. 614–617.

    Article  Google Scholar 

  • Bulakh, A.G., Zolotarev, A.A., and Krivovichev, V.G., Struktury, izomorfism, formuly, klassifikatsiya mineralov, (Structures, Isomorphism, Formulas, and Classification of Minerals), St. Petersburg: St.-Petersburg University, 2014.

    Google Scholar 

  • Christy, A.G., Causes of anomalous mineralogical diversity in the Periodic Table, Mineral. Mag., 2015, vol. 79, pp. 33–49.

    Article  Google Scholar 

  • Dolivo-Dobrovolsky, V.V., Dominant valence, minals (end members) and reciprocal systems, Geol. Ore Deposits, 2010, vol. 52, pp. 618–623.

    Article  Google Scholar 

  • Hatert, F. and Burke, E.A.J., The IMA-CNMNC dominant-constituent rule revised and extended, Can. Mineral., 2008, vol. 46, pp. 717–728.

    Article  Google Scholar 

  • Hawthorne, F.C., The use of end-member charge-arrangements in defining new mineral species and heterovalent substitutions in complex minerals, Can. Mineral., 2002, vol. 40, pp. 699–710.

    Article  Google Scholar 

  • Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A., and Yang, H., Mineral evolution, Am. Mineral., 2008, vol. 93, pp. 1693–1720.

    Article  Google Scholar 

  • Hazen, R.M., Bekker, A., Bish, D.L., Bleeker, W., Downs, R.T., Farquhar, J., Ferry, J.M., Grew, E.S., Knoll, A.H., Papineau, D.F., Ralph, J.P., Sverjensky, D.A., and Valley, J.W., Needs and opportunities in mineral evolution research, Am. Mineral., 2011, vol. 96, pp. 953–963.

    Article  Google Scholar 

  • Krivovichev, S.V., Complexity, diversity and evolution of the mineral world: from Vernadsky to the present day, in Vernadskii i XXI vek: geosfera, biosfera, noosfera, i simmetriya (Vernadsky and XXI Century: Geosphere, Biosphere, Noosphere and Symmetry) Sofia: St. Ivan Rilski, 2013a, pp. 26–32.

    Google Scholar 

  • Krivovichev, S.V., Structural complexity of minerals: information storage and processing in the mineral world, Mineral. Mag., 2013b, vol. 77, no. 3, pp. 275–326.

    Article  Google Scholar 

  • Krivovichev, V.G. and Charykova, M.V., Klassifikatsiya mineral’nykh sistem (Classification of Mineral Systems), St. Petersburg: St. Petersburg University Press, 2013.

    Google Scholar 

  • Krivovichev, V.G. and Charykova, M.V., Number of minerals of different chemical elements: statistics of 2012 (a new approach to the old problem), Geol. Ore Deposits, 2014, vol. 56, pp. 553–559.

    Article  Google Scholar 

  • Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasarov, E.A., Rimskay-Korsakova, O.M., Nefedov, E.I., Ilyinsky, G.A., Sergeev, A.S., and Abakumova, N.B., Kaledonskii kompleks ultraosnovnykh, shchelochnykh porod, i karbonatitov Kol’skogo poluostrova i Severnoi Karelii (geologiya, petrologiya, mienralogiya, i geokhimiya) (Caledonian Complex of Ultramafic, Alkaline Rocks and Carbonatites of the Kola Peninsula and North Karelia (Geology, Petrology, Mineralogy and Geochemistry)), Moscow: Nedra, 1965 [in Russian].

    Google Scholar 

  • Mandarino, J.A., Nickel, E.H., and Cesbron, F., Rules of procedure of the Commission on New Minerals and Mineral Names, International Mineralogical Association. Can. Mineral., 1984, vol. 22, pp. 367–368.

    Google Scholar 

  • Nickel, E.H., Solid solutions in mineral nomenclature. Can. Mineral., 1992, vol. 30, pp. 231–234.

    Google Scholar 

  • Nickel, E.H., The definition of a mineral, Can. Mineral., 1995, vol. 33, pp. 689–690.

    Google Scholar 

  • Nickel, E.H. and Grice, J.D., The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature, Can. Mineral., 1998, vol. 36, pp. 913–926.

    Google Scholar 

  • Pasero, M., The New IMA List of Minerals, 2014. http:/pubsites. uws.edu.au/ima-cnmnc/

    Google Scholar 

  • Pekov, I.V., New minerals: where are they discovered, Sorosovsky Obrazovat. J., 2001, vol. 7, no. 5, pp. 65–74.

    Google Scholar 

  • Williams, P.A., Hatert, F., Pasero, M., and Mills, S.J., IMA Commission on New Minerals, Nomenclature and Classification (CNMNC). Newsletter 22. New minerals and nomenclature modifications approved in 2014, Mineral. Mag., 2014, vol. 78, pp. 1241–1248.

    Article  Google Scholar 

  • Yushkin, N.P., Evolutionary ideas in modern mineralogy, Zap. Vsesoyuz. Mineral. O-va, 1982, vol. 116, no. 4, pp. 432–442.

    Google Scholar 

  • Yushkin, N.P., Evolution of the mineral world, origin of the biosphere and biomineral co-evolution, in Mineraly, mineraloobrazovanie, struktura, raznoobrasie, i evolyutsiya mineral’nogo mira, rol’mineralov v proiskhozhdenii i razvitii zhisni, biomineral’nyi vzaimodeistviya (Minerals, Mineral Formation, Structure, Diversity, and Evolution of the Mineral World, the Role of Minerals in the Origin of Life, Biomineral Interactions), Yushkin, N.P., Ed., Syktyvkar, 2008, pp. 455–459.

    Google Scholar 

  • Zhabin, A.G., Is there evolution of mineral species on Earth? Dokl Akad. Nauk SSSR, 1979, vol. 247, no. 1, pp. 199–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Krivovichev.

Additional information

Original Russian Text © V.G. Krivovichev, M.V. Charykova, 2015, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2015, No. 4, pp. 1–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivovichev, V.G., Charykova, M.V. Mineral systems, their types, and distribution in nature. I. Khibiny, Lovozero, and the Mont Saint-Hilaire. Geol. Ore Deposits 58, 551–558 (2016). https://doi.org/10.1134/S1075701516070059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701516070059

Navigation