Skip to main content
Log in

Upper Triassic pyritized bivalve mollusks from the Sentachan orogenic gold–antimony deposit, eastern Yakutia: Mineralogy and sulfur isotopic composition

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Pyritized bivalve mollusks have been revealed for the first time in upper Norian sedimentary rocks at the large orogenic Sentachan gold–antimony deposit in eastern Yakutia. It has been established that they are related to species of the genus Monotis (M. ex gr. jacutica (Teller) (specimen no. 2077/1, CSGM) and M. pachypleura (Teller) (specimen no. 2077/2, CSGM), which existed during the Monotis densistriata phase of the Norian Age of the Triassic Epoch presumably 211.5–214 Ma ago. The occurrence of two pyrite generations differing in morphology, sulfur impurity, and isotopic compositions corroborates the suggestion that pyritization of fauna was a discrete process. It has been shown that sulfur that formed owing to bacterial sulfate reduction and interaction with organic matter was involved in the pyritization of bivalve mollusks, whereas mixing of magmatic sulfur and sulfur derived from host sedimentary rocks participated in deposition of Au–Sb ore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amuzinskii, V.A., Anisimova, G.S., and Zhdanov, Yu.Ya., Sarylakhskoe i Sentachanskoe zoloto-sur’myanye mestorozhdeniya: Geologiya, mineralogiya i geokhimiya (Sarylakh and Sentachan Gold–Stibium Deposits: Geology, Mineralogy, and Geochemistry) Moscow: MAIK “Nauka/Interpereodika”, 2001.

    Google Scholar 

  • Berger, V.I. Sur’myanye mestorozhdeniya (Stibium Deposits), Leningrad: Nedra, 1978.

    Google Scholar 

  • Bortnikov N.S. Geochemistry and origin of the ore-forming fluids in hydrothermal–magmatic systems in tectonically active zones, Geol. Ore Deposits, 2006, vol. 48, no. 1, pp. 1–22.

    Article  Google Scholar 

  • Bortnikov, N.S., Bryzgalov, I.A., Krivitskaya, N.N., Prokof’ev, V.Yu., and Vikent’eva, O.V., The Maiskoe multimegastage disseminated gold–sulfide deposit (Chukotka, Russia): mineralogy, fluid inclusions, stable isotopes (O and S), history, and conditions of formation, Geol. Ore Deposits, 2004, vol. 46, no. 6, pp. 409–440.

    Google Scholar 

  • Bortnikov, N.S., Gamyanin, G.N., Alpatov, V.A., Naumov, V.B., Nosik, L.P., and Mironova, O.F., Mineralogy,geochemistry and origin of the Nezhdaninsk gold deposit (Sakha-Yakutia,Russia), Geol. Ore Deposits, 1998, vol. 40, no. 2, pp. 121–138.

    Google Scholar 

  • Bortnikov N.S., Gamyanin G.N., Vikent’eva O.V., et al., The Sarylakh and Sentachan gold–antimony deposits, Sakha-Yakutia: a case of combined mesothermal gold–quartz and epithermal stibnite ores, Geol. Ore Deposits, 2010. Vol. 52, no. 5, pp. 339–372.

    Google Scholar 

  • Canfield, D.E. and Raiswell, R., The evolution of the sulfur cycle, Am. J. Sci., 1999, vol. 299, pp. 697–723.

    Article  Google Scholar 

  • Chang, Z., Large, R.R., and Maslennikov, V., Sulfur isotopes in sediment-hosted orogenic gold deposits: evidence for an early timing and a seawater sulfur source, Geology, 2008, vol. 36, no. 12, pp. 971–974.

    Article  Google Scholar 

  • Field, C.W. and Fifarek, R.H., Light stable isotope systematics in the epithermal systems, in Geology and Geochemistry of Epithermal Systems, Rev. Econ. Geol., 1985, vol. 2, pp. 99–128.

    Google Scholar 

  • Gamyanin, G.N., Mineralogo-geneticheskie aspekty zolotogo orudeneniya Verkhoyano-Kolymskikh mezozoid (Mineralogical–genetic aspects of the Gold Mineralization of the Verkhoyansk–Kolyma Mesozoides), Moscow: GEOS, 2001.

    Google Scholar 

  • Glasby, G.P., Prozherova, I.A., Maslennikov, V.V., and Petukhov, S., Jusa and Barsuchi Log volcanogenic massive sulfide deposits from the southern Urals of Russia: tectonic setting, structure and mode of formation, Resour. Geol., 2007, vol. 57, no. 1, pp. 24–36.

    Google Scholar 

  • Goldfarb, R.J., Newberry, R.J., Pickthorn, W.J., and Gent, C.A., Oxygen, hydrogen, and sulfur isotope studies in the Juneau gold belt, southeastern Alaska; constraints on the origin of hydrothermal fluids, Econ. Geol., 1991, vol. 86, no. 1, pp. 66–80.

    Google Scholar 

  • Habicht, K.S., Gade, M., Thamdrup, B., Berg, P., and Canfield, D.E., Calibration of sulfate levels in the Archean ocean, Science, 2002, vol. 298, pp. 2372–2374.

    Article  Google Scholar 

  • Han, L., Tanweer, A., Szaran, J., et al., A modified technique for the preparation of SO2 from sulphates and sulphides for sulfur isotope analyses, Isotopes Environ. Health Stud, 2002, vol. 38, no. 3, pp. 177–183.

    Article  Google Scholar 

  • Holser, W.T., Schidlowski, M., Mackenzie, F.T., and Maynard, J.B., Geochemical Cycles of Carbon and Sulfur, Chemical Cycles in the Evolution of the Earth, Gregor, C. B., Garrels, R. M., Mackenzie, F. T., and Maynard, J. B., Eds., New York: Wiley, 1988. http://www.portergeo.com.au/database/mineinfo.asp?mineid=mn646.

  • Indolev L.N., Zhdanov Yu.Ya., Supletsov, V.M., Sur’myanoe orudenenie Verkhoyano-Kolymskoi provintsii (Stibium Mineralization of the Verkhoyansk–Kolyma Province) Novosibirsk: Nauka, 1980.

    Google Scholar 

  • Ivensen Yu.P. and Levin, V.I., Genetic types of gold mineralization and gold formations, in Zolotorudnye formatsii i geokhimiya zolota Verkhoyano-Chukotskoi skladchatoi oblasti (Gold Formations and Geochemistry of the Verkhoyansk–Chukotka Fold Area), Moscow: Nauka, 1975, pp. 5–120.

    Google Scholar 

  • Kiparisova JI.D., Bychkov Yu.M., Polubotko I.V., Pozdnetriasovye dvustvorchatye mollyuski severo-vostoka SSSR. Severo-vostochnoe geologicheskoe upravlenie (Late Triassic Bivalve Mollusks of the Northeast USSR. Northeastern Geological Survey), Magadan: 1966.

    Google Scholar 

  • Kohn, M., Lee, R., Stakes, D., and Orange, D.L., Sulfur isotope variability in biogenic pyrite: reflections of the heterogeneous bacterial colonization, Am. Mineral., 1998, vol. 83, pp. 1454–1468.

    Article  Google Scholar 

  • Konstantinov, M. M., Nekrasov, E. M., Sidorov, A. A., Struzhkov, S. F. Zolotorudnye giganty Rossii i mira (Gold Giants of Russia and World), Moscow: Nauchnyi mir, 2000.

    Google Scholar 

  • Kozur, H.W., Integrated ammonoid, conodont and radiolarian zonation of the Triassic, Hallesches Jahrb. Geowissenschaften, 2003, vol. 25, pp. 49–79.

    Google Scholar 

  • Krystyn L., Boquerel H., Kuerschner, W., et al. Proposal for a candidate GSSP for the base of the Rhaetian Stage, in The Global Triassic, Lucas, S. & Sielman, J.A., Ed., New Mexico Museum of Natural History and Science Bulletin, 2007, vol. 41, pp. 189–199.

    Google Scholar 

  • Manucharyants, B.O. and Markova, E.A., Genetic features of the gold–stibium mineralization of Yakutia, Sov. Geologiya, 1977, no. 1, pp. 127–133.

    Google Scholar 

  • Manucharyants B.O., Prushinskaya E.Ya., and Vladimirov, V.G., Some data on the character of hydrothermal solutions forming gold and gold–stibium mineralization, Osnovnye parametry prirodnykh protsessov endogennogo rudoobrazovaniya (Main Parameters of Natural Endogenic Ore Formation), Nauka: Novosibirsk, 1979, vol. 2, pp. 210–220.

    Google Scholar 

  • Marzoli, A., Bertrand, H., Knight, K., et al., Synchrony of the Central Atlantic magmatic province and the Triassic–Jurassic boundary climatic and biotic crisis, Geology, 2004, vol. 32, pp. 973–976.

    Article  Google Scholar 

  • McElwain, J.C., Beerling, D.J., and Woodward, F.I., Fossil plants and global warming at the Triassic–Jurassic boundary, Science, 1999, vol. 285, pp. 1386–1390.

    Article  Google Scholar 

  • Naz’mova, G.N. and Spiridonov, E.M., Mineral assemblages of the juxtaposition zones of the gold and stibium mineralization, in Metody mineral. issledovanii (Methods of Mineral Studies), Moscow, 1977, pp. 97–102.

    Google Scholar 

  • Ogg, J.G., Triassic, in The Geologic Time Scale 2012, Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M., Eds, Amsterdam: Elsevier, 2012, pp. 681–730.

    Chapter  Google Scholar 

  • Orchard, M.J. and Tozer, E.T., Triassic conodont biochronology, its intercalibration with the ammonoid standard, and a biostratigraphic summary for the Western Canada sedimentary basin, Can. Soc. Petrol. Geol. Bull., 1997, vol. 45, no. 4, pp. 675–692.

    Google Scholar 

  • Pak, E. and Holser, W.T., The Permian–Triassic of the Gartnerkofel-1 core (Carnic Alps, Austria): sulfur, in The Permian–Triassic boundary in the Carnic Alps of Austria (Gartnerkofel region). Abhandlungen der geologischen Bundesanstalt Wien, 1991, vol. 45, pp. 165–167.

    Google Scholar 

  • Popa, R., Kinkle, B.K., and Badescu, A., Pyrite framboids as biomarkers for iron–sulfur systems, Geomicrobiol. J., 2004, vol. 21, pp. 193–206.

    Article  Google Scholar 

  • Seal, R.R., Sulfur isotope geochemistry of sulfide minerals, Rev. Mineral. Geochem., 2006, vol. 61, no. 1, pp. 633–677.

    Article  Google Scholar 

  • Stepanov, D.L., Burakova, A.T., Ivanov, A.O., Kiselev, G.N., and Popov, A.V., Paleoekologiya: Uchebnoe posobie (Paleoekologiya: A Manual), Leningrad: Leningr. Univ., 1990.

    Google Scholar 

  • Tozer, E.T., Canadian Triassic ammonoid faunas, Geol. Surv. Can. Bull., 1994, pp. 1–663.

    Google Scholar 

  • Vladimirov, V.G. Geological Structure of the Adycha–Taryn Zone and Distribution of Gold–Stibium Mineralization in it, Extended Abstract of Cand. Sci. (Geol-Min.) Dissertation, Moscow: 1977.

    Google Scholar 

  • Wilkin, R.T., Barnes, H.L., and Brantley, S.L., The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 3897–3912.

    Article  Google Scholar 

  • Williford, K.H., Foriel, J., Ward, P.D., and Steig, E.J., Major perturbation in sulfur cycling at the Triassic–Jurassic boundary, Geology, 2009, vol. 37, no. 9, pp. 835–838.

    Article  Google Scholar 

  • Zaikov, V.V., Shadlun, T.N., Maslennikov, V.V., and Bortnikov, N.S., Yaman-Kasy sulfide lode: a black smoker in the Ural paleoocean, Geol. Rud. Mestorozhd., 1995, vol. 37, no. 6, pp. 511–529.

    Google Scholar 

  • Zolotarev, V.N., Early diagenetic alterations in chemical composition of shells of bivalve mollusks, Litol. Polezn. Iskop., 1976, no. 3, pp. 20–29.

    Google Scholar 

  • Zonal’naya stratigrafiya fanerozoya Rossii (Zonal Stratigraphy of the Phanerozoic of Russia), Koren’, T.En., Ed., SPb.: VSEGEI, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Pal’yanova.

Additional information

Original Russian Text © G.A. Pal’yanova, E.S. Sobolev, V.N. Reutsky, N.S. Bortnikov, 2016, published in Geologiya Rudnykh Mestorozhdenii, 2016, Vol. 58, No. 6, pp. 513–521.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal’yanova, G.A., Sobolev, E.S., Reutsky, V.N. et al. Upper Triassic pyritized bivalve mollusks from the Sentachan orogenic gold–antimony deposit, eastern Yakutia: Mineralogy and sulfur isotopic composition. Geol. Ore Deposits 58, 456–464 (2016). https://doi.org/10.1134/S1075701516060064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701516060064

Navigation